With the increasing prevalence of obesity in the USA, diabetes mellitus is a growing concern. Most diabetic patients will die from a thrombotic vascular event (heart attack or stroke) where the effects of oxidative stress on platelets, arising from major metabolic disturbances such has hyperglycemia, play a major role. How oxidative stress directly leads to platelet dysfunction is currently an intense area of investigation. We have recently performed rigorous proteomic and metabolomic profiling in diabetic versus healthy platelets and identified specific oxidized methionine modifications in key mitochondrial metabolic proteins, that may be the source for some of the major cellular metabolic disturbances (defects in mitophagy and lipid beta- oxidation) associated with diabetic platelets. Moreover, MsrB2, an understudied mitochondrial matrix enzyme, can reverse these oxidative-stress induced methionine oxidative changes, protecting platelets. Based upon our Preliminary Studies we hypothesize that DM associated oxidative stress modifies key proteins involved in essential cellular biological and biochemical processes; mitochondria specific MsrB2 may play a critical role in reversing such potentially harmful changes, thus protecting DM patients from thrombovascular events. In addressing our hypothesis, we present three Specific Aims.
Specific Aim #1 will be to assess the effects of oxidative stress on Parkin and the recently described platelet mitophagy protective process.
Specific Aim #2 will be to determine whether methionine modification of HADHA, a key component of the mitochondrial trifunctional protein, perturbs mitochondrial beta-oxidation. The third Specific Aim addresses whether MsrB2 plays a role in rectifying these disturbances, in addition to possible other anti-oxidant avenues for therapy. Our team of internationally recognized experts in the areas of diabetes mellitus, platelet biology, mitochondrial biology and metabolism, will in the short term decipher important new mechanisms regulating mitochondrial dysfunction and apoptosis in diabetes mellitus. In the long term, we will have identified new targets for novel therapy against platelet mediated adverse cardiovascular events in diabetes mellitus.

Public Health Relevance

Diabetes mellitus associated cardiovascular events leads to considerable morbidity, mortality, and economic loss. We have discovered that diabetes associated oxidative stress can lead to specific protein modifications, resulting in platelet metabolic reprogramming. Our goals are to decipher mechanisms, potential consequences, and how we can prevent such detrimental protein changes, towards novel cardiovascular therapeutics in diabetes mellitus.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
2R01HL122815-05A1
Application #
9884665
Study Section
Clinical and Integrative Diabetes and Obesity Study Section (CIDO)
Program Officer
Warren, Ronald Q
Project Start
2015-04-01
Project End
2024-03-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
5
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Yale University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Wang, Dandan; Hu, Xiaoyue; Lee, Seung Hee et al. (2018) Diabetes Exacerbates Myocardial Ischemia/Reperfusion Injury by Down-Regulation of MicroRNA and Up-Regulation of O-GlcNAcylation. JACC Basic Transl Sci 3:350-362
Zou, Siying; Teixeira, Alexandra M; Kostadima, Myrto et al. (2017) SNP in human ARHGEF3 promoter is associated with DNase hypersensitivity, transcript level and platelet function, and Arhgef3 KO mice have increased mean platelet volume. PLoS One 12:e0178095
Jin, Yu; Xie, Yi; Ostriker, Allison C et al. (2017) Opposing Actions of AKT (Protein Kinase B) Isoforms in Vascular Smooth Muscle Injury and Therapeutic Response. Arterioscler Thromb Vasc Biol 37:2311-2321
Xiang, Yaozu; Hwa, John (2016) Regulation of VWF expression, and secretion in health and disease. Curr Opin Hematol 23:288-93
Chae, Wook-Jin; Ehrlich, Allison K; Chan, Pamela Y et al. (2016) The Wnt Antagonist Dickkopf-1 Promotes Pathological Type 2 Cell-Mediated Inflammation. Immunity 44:246-58
Lee, Seung Hee; Du, Jing; Stitham, Jeremiah et al. (2016) Inducing mitophagy in diabetic platelets protects against severe oxidative stress. EMBO Mol Med 8:779-95
Stitham, J; Hwa, J (2016) Prostacyclin, Atherothrombosis and Diabetes Mellitus: Physiologic and Clinical Considerations. Curr Mol Med 16:328-42
Xiang, Yaozu; Cheng, Jijun; Wang, Dandan et al. (2015) Hyperglycemia repression of miR-24 coordinately upregulates endothelial cell expression and secretion of von Willebrand factor. Blood 125:3377-87
Shao, Lan; Zhou, Huanjiao Jenny; Zhang, Haifeng et al. (2015) SENP1-mediated NEMO deSUMOylation in adipocytes limits inflammatory responses and type-1 diabetes progression. Nat Commun 6:8917
Xie, Yi; Jin, Yu; Merenick, Bethany L et al. (2015) Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition. Sci Signal 8:ra44