Prenatal hypoxia is one of the most significant clinical challenges facing obstetrics today. Adverse in utero conditions that result in reduced oxygen delivery to the fetus generate fetal growth restriction associated with morbidity and mortality. Epidemiological and animal studies have convincingly shown that growth-restricted fetuses have an increased risk of adult cardiovascular disease. We have shown that prenatal hypoxia of pregnant guinea pigs generates a fetal cardiac phenotype of inflammation, oxidative and nitrosative stress, and altered mitochondrial enzyme activity. Further, the offspring exhibit reduced mitochondrial protein expression, mitochondrial respiration and cardiac performance. Mitochondria are important for energy production of the cardiac cell whose normal function is critical for cell survival. We hypothesize that intrauterine hypoxia permanently alters fetal cardic mitochondrial respiration via epigenetic mechanisms associated with DNA methylation, compromising heart function in the offspring. We will study the effects of prenatal hypoxia on 90d old guinea pig offspring and determine the programming effects on the 1) mitochondrial respiratory capacity, mRNA/protein expression, and DNA methylation of isolated cardiac cells of offspring hearts, 2) protective effects of prenatal treatment against nitrosative and oxidative stress on cardiac function of offspring hearts, and 3) the vulnerability of heart function to subsequent stressors via pressure overload and fatty acid excess. We will use state-of-the-art approaches for investigating epigenetic mechanisms (DNA methylation), mitochondrial respiration (Sea Horse Bioscience XF24 Analyzer) of freshly cardiac cells, and cardiac performance (non-invasive echocardiography) in guinea pig offspring exposed to normoxia and hypoxia in utero. Responses to subsequent physiological challenges such as aortic pressure overload and high fat diet will be measured to identify the translational impact of fetal hypoxemia on the vulnerability of offspring hearts to cardiac failure. This will bring a new perspective on te role of the mitochondrion as an important target site of oxidative damage in utero in contributing as a causative factor in cardiac dysfunction in the offspring.

Public Health Relevance

Chronic intrauterine hypoxia generates fetal growth restriction and alters cardiac metabolism. The lasting consequences in the offspring can impair mitochondrial function and increase cardiac risk to both pressure overload and metabolic challenges. The goal of this proposal is to identify the underlying mechanisms mediating mitochondrial and cardiac function in programmed offspring in order to improve care of affected neonates with mitochondrial disorders that can lead to heart disease and failure.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Pregnancy and Neonatology Study Section (PN)
Program Officer
Pemberton, Victoria
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Maryland Baltimore
Obstetrics & Gynecology
Schools of Medicine
United States
Zip Code
Song, Hong; Telugu, Bhanu P; Thompson, Loren P (2018) Sexual dimorphism of mitochondrial function in the hypoxic guinea pig placenta. Biol Reprod :
Thompson, Loren P; Chen, Ling; Polster, Brian M et al. (2018) Prenatal hypoxia impairs cardiac mitochondrial and ventricular function in guinea pig offspring in a sex-related manner. Am J Physiol Regul Integr Comp Physiol :
Turan, Sifa; Aberdeen, Graham W; Thompson, Loren P (2017) Chronic hypoxia alters maternal uterine and fetal hemodynamics in the full-term pregnant guinea pig. Am J Physiol Regul Integr Comp Physiol 313:R330-R339
Thompson, Loren P; Pence, Laramie; Pinkas, Gerald et al. (2016) Placental Hypoxia During Early Pregnancy Causes Maternal Hypertension and Placental Insufficiency in the Hypoxic Guinea Pig Model. Biol Reprod 95:128