Despite major advances in the understanding of the pathogenesis of pulmonary fibrosis, many of the therapies that target the most well-studied genes and pathways have not achieved universal success in reversing or even halting disease progression. This, along with the clinical heterogeneity of patients with idiopathic pulmonary fibrosis (IPF), suggest that consideration of other genes in models of disease pathogenesis may be useful. Fibroblasts from patients with IPF differ in the expression of many genes compared to normal fibroblasts, and this laboratory has had a longstanding interest in identifying epigenetic changes that account for these differences. KCNMB1 codes for the beta subunit of the large conductance (BK, Maxi-K, KCa1.1) potassium channel and was identified in our previous microarray study as the top differentially methylated gene in IPF fibroblasts. BK channels modulate potassium current and are well known to be important in vascular tone and smooth muscle biology, but its importance in fibrosis has never been examined. We recently showed in a publication that 1) KCNMB1 expression is increased in fibroblasts from IPF patients, 2) KCNMB1 contributes to increased BK channel activity, and 3) increased function of BK channels promote myofibroblast differentiation, a hallmark of IPF. How it does so and whether this is sufficient to promote or worsen pulmonary fibrosis in vivo is unknown. The objectives of this grant are to determine the mechanism of how BK channels contribute to myofibroblast differentiation and establish the importance of BK channels to animal models of pulmonary fibrosis. Our central hypothesis is that the epigenetic upregulation of KCNMB1 and increased BK channel activity in IPF fibroblasts contribute to pulmonary fibrosis by promoting calcium signaling in fibroblasts, which lead to myofibroblast differentiation.
The First Aim i s to establish the importance of BK channels to the development of pulmonary fibrosis in vivo, and localize its pathogenic actions to lung fibroblasts.
The Second Aim i s to delineate the mechanism by which BK channels contribute to myofibroblast differentiation, with the hypothesis that BK channels promote intracellular calcium signaling, which is necessary for differentiation into myofibroblasts.
The Third Aim i s to determine how expression of KCNMB1 is regulated in lung fibroblasts and how profibrotic stimuli modulates opening and closing of BK channels. This proposal is significant because it establishes BK channels as a novel, but important driver in the pathogenesis of pulmonary fibrosis. Accomplishing these aims will also identify a mechanism and role for BK channels in the differentiation of myofibroblasts that has never been previously described. Ultimately, these studies will serve to identify new targets for future IPF therapeutics.

Public Health Relevance

Idiopathic pulmonary fibrosis is a progressive scarring disease of the lungs with minimally effective therapies. This project is relevant to the overall NIH mission of public health because it identifies a specific potassium ion channel ? the BK channel ? as a novel enabler of myofibroblast activation and ultimately, pulmonary fibrosis. Targeting BK channels would be a new strategy for the treatment of this deadly disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
2R01HL127203-06A1
Application #
10048967
Study Section
Lung Injury, Repair, and Remodeling Study Section (LIRR)
Program Officer
Craig, Matt
Project Start
2015-04-01
Project End
2025-05-31
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Dodi, Amos E; Ajayi, Iyabode O; Chang, Christine et al. (2018) Regulation of fibroblast Fas expression by soluble and mechanical pro-fibrotic stimuli. Respir Res 19:91
Sanders, Yan Y; Liu, Hui; Scruggs, Anne M et al. (2017) Epigenetic Regulation of Caveolin-1 Gene Expression in Lung Fibroblasts. Am J Respir Cell Mol Biol 56:50-61
Koh, Hailey B; Scruggs, Anne M; Huang, Steven K (2016) Transforming Growth Factor-?1 Increases DNA Methyltransferase 1 and 3a Expression through Distinct Post-transcriptional Mechanisms in Lung Fibroblasts. J Biol Chem 291:19287-98
Zas?ona, Zbigniew; Scruggs, Anne M; Peters-Golden, Marc et al. (2016) Protein kinase A inhibition of macrophage maturation is accompanied by an increase in DNA methylation of the colony-stimulating factor 1 receptor gene. Immunology 149:225-37
Wettlaufer, Scott H; Scott, Jacob P; McEachin, Richard C et al. (2016) Reversal of the Transcriptome by Prostaglandin E2 during Myofibroblast Dedifferentiation. Am J Respir Cell Mol Biol 54:114-27
Neagos, Jacqueline; Standiford, Theodore J; Newstead, Michael W et al. (2015) Epigenetic Regulation of Tolerance to Toll-Like Receptor Ligands in Alveolar Epithelial Cells. Am J Respir Cell Mol Biol 53:872-81
Domingo-Gonzalez, Racquel; Wilke, Carol A; Huang, Steven K et al. (2015) Transforming growth factor-? induces microRNA-29b to promote murine alveolar macrophage dysfunction after bone marrow transplantation. Am J Physiol Lung Cell Mol Physiol 308:L86-95
Huang, Steven K; Peters-Golden, Marc (2015) Prostaglandin E? and polyenylphosphatidylcholine: stiff competition for the fibrotic complications of inflammatory bowel disease? Dig Dis Sci 60:1514-6
Huang, Steven K; Horowitz, Jeffrey C (2014) Outstaying their Welcome: The Persistent Myofibroblast in IPF. Austin J Pulm Respir Med 1:3
Huang, Steven K; Scruggs, Anne M; McEachin, Richard C et al. (2014) Lung fibroblasts from patients with idiopathic pulmonary fibrosis exhibit genome-wide differences in DNA methylation compared to fibroblasts from nonfibrotic lung. PLoS One 9:e107055