Pathological hypertrophic growth of cardiac myocytes can lead to heart failure; inhibiting this growth can avert heart failure. While we have a good understanding of growth-activating processes in the heart, there is a gap in our understanding of growth-inhibiting processes. The objective of this proposal is to address this gap by examining the protein quantity and quality control (PQQC) system in the sarco/endoplasmic reticulum (SR/ER) of cardiac myocytes, which we have shown can moderate cardiac myocyte growth. This objective aligns with our long-term goal of defining innovative strategies for averting heart failure by reducing pathological hypertrophy. We found that a key member of the SR/ER PQQC system, the transcription factor, ATF6, decreases cardiac myocyte hypertrophy. ATF6, which is also cardioprotective, is an SR/ER transmembrane (TM) protein that senses growth signals. We showed that ATF6 induces the SR/ER TM E3 ubiquitin (Ub) ligase, synoviolin (Syvn1); SR/ER TM Ub ligases have not been studied in the heart. Surprisingly, Syvn1 did not affect global protein ubiquitination or degradation, but it decreased cardiac myocyte hypertrophy in response to growth stimuli. The hypothesis is that Syvn1 decreases toxic protein misfolding by targeting terminally misfolded proteins made in the SR/ER for degradation. Moreover, Syvn1 can target select signaling proteins for degradation, such as the cytosolic growth-promoting kinase, serum/glucocorticoid-regulated kinase 1, SGK1, and that these functions contribute to the ability of Syvn1 to moderate cardiac hypertrophy. The approach will use viral-mediated gene transfer to cultured cardiac myocytes and to mouse hearts, in vivo, to examine the effects of Syvn1 gain- and loss-of-function.
The specific aims are to examine the effects of Syvn1- gain- or loss-of-function on 1) cardiac hypertrophy, 2) the degradation of misfolded SR/ER proteins during cardiac myocyte hypertrophy, and 3) the level, location and activity of SGK1, and its impact on cardiac myocyte hypertrophy. The proposed studies are expected to show that, as a regulator of PQQC, Syvn1 contributes to balancing protein synthesis and protein folding capacity. These results will be significant because they will reveal novel mechanisms of inhibiting hypertrophy, and they will identify new targets for HF therapy. The proposed research is innovative because roles for the SR/ER PQQC and, specifically, SR/ER TM E3 Ub ligases in growth regulation have not been examined in any tissue.

Public Health Relevance

The proposed project is relevant to public health and the NIH mission, because it addresses the pathological cardiac hypertrophy that often leads to heart failure, which, in the U.S., affects 6M people and causes 500,000 deaths/year. Current therapies treat the symptoms of heart failure, but do not cure the disease. The proposed research examines novel molecular mechanisms of attenuating hypertrophy, which is expected to reveal new targets for the future development of innovative therapies for reducing pathological hypertrophy, thus averting heart failure.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL127439-04
Application #
9513047
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Schwartz, Lisa
Project Start
2015-07-01
Project End
2019-06-30
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
4
Fiscal Year
2018
Total Cost
Indirect Cost
Name
San Diego State University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
073371346
City
San Diego
State
CA
Country
United States
Zip Code
92182
Arrieta, A; Blackwood, E A; Glembotski, C C (2018) ER Protein Quality Control and the Unfolded Protein Response in the Heart. Curr Top Microbiol Immunol 414:193-213
Sacchi, Veronica; Wang, Bingyan J; Kubli, Dieter et al. (2017) Peptidyl-Prolyl Isomerase 1 Regulates Ca2+ Handling by Modulating Sarco(Endo)Plasmic Reticulum Calcium ATPase and Na2+/Ca2+ Exchanger 1 Protein Levels and Function. J Am Heart Assoc 6:
Glembotski, Christopher C (2017) Expanding the Paracrine Hypothesis of Stem Cell-Mediated Repair in the Heart: When the Unconventional Becomes Conventional. Circ Res 120:772-774
Yu, Zhui; Sheng, Huaxin; Liu, Shuai et al. (2017) Activation of the ATF6 branch of the unfolded protein response in neurons improves stroke outcome. J Cereb Blood Flow Metab 37:1069-1079
Gray, Charles B B; Suetomi, Takeshi; Xiang, Sunny et al. (2017) CaMKII? subtypes differentially regulate infarct formation following ex vivo myocardial ischemia/reperfusion through NF-?B and TNF-?. J Mol Cell Cardiol 103:48-55
Jin, Jung-Kang; Blackwood, Erik A; Azizi, Khalid et al. (2017) ATF6 Decreases Myocardial Ischemia/Reperfusion Damage and Links ER Stress and Oxidative Stress Signaling Pathways in the Heart. Circ Res 120:862-875
Reynolds, Julia O; Quick, Ann P; Wang, Qiongling et al. (2016) Junctophilin-2 gene therapy rescues heart failure by normalizing RyR2-mediated Ca2+ release. Int J Cardiol 225:371-380
Doroudgar, Shirin; Quijada, Pearl; Konstandin, Mathias et al. (2016) S100A4 protects the myocardium against ischemic stress. J Mol Cell Cardiol 100:54-63
Glembotski, Christopher C (2015) Breaking down the COP9 Signalsome in the heart: how inactivating a protein ubiquitin ligase increases protein ubiquitylation and protects the heart. Circ Res 117:914-6
Doroudgar, Shirin; Völkers, Mirko; Thuerauf, Donna J et al. (2015) Hrd1 and ER-Associated Protein Degradation, ERAD, are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes. Circ Res 117:536-46