The prevalence of heart failure continues to rise with unacceptable rates of morbidity and mortality. Currently, over 6 million Americans have been diagnosed with heart failure with an associated annual health care expense estimated at 35 billion US dollars and rising. The single most important cause for heart failure is ischemic cardiomyopathy, where loss of cardiomyocytes due to ischemic events is the main driver of disease. Due to limited rates of cardiac regeneration (estimated at 1% new cardiomyocyte formation per year during normal aging), the workload on remaining cardiomyocytes is increased, giving rise to cardiac hypertrophy and ultimately heart failure. Since the most important driver of heart failure is loss of cardiomyocytes, the discovery of cardiac progenitor cells (CPCs) in the adult heart that can give rise to all cardiac lineages when cultured uncovered the possibility of enhancing cardiac regeneration. Up until this point cell therapy using cultured CPCs has been the main method used to enhance cardiac regeneration. However, most injected cells die within weeks and the ultimate improvement in cardiac function is likely mediated by endogenous CPCs. The current proposal will identify ways of stimulating CPCs to enhance endogenous regeneration. Our long-term goal is to understand how endogenous CPCs are activated in response to cardiac injury and what determines CPC fate decisions in vivo with the ultimate objective of finding strategies that enhance endogenous cardiac regeneration. We recently published genetic mouse models that allow lineage tracing of endogenous cardiac progenitor cells and will use these mouse models throughout this proposal. Upon genetic lineage tracing of endogenous CPCs we noted many endothelial cells being generated, but only few cardiomyocytes. However, we hypothesize that endogenous CPCs can be activated to enhance their cardiogenic potential. The proposed genetic mouse models and manipulations of specific signaling pathways will be used to identify strategies to enhance cardiac regeneration.
Our specific aims are to 1) Determine whether and how different stimuli activate endogenous cardiac c-kit+ CPCs toward cardiac lineage, 2) Determine whether blocking endothelial fates will activate endogenous c-kit+ CPCs to become cardiomyocytes, and 3) Establish to what extent Notch1 signaling is important for c-kit+ progenitor proliferation and differentiation toward both endothelial cells and cardiomyocytes. The goal of this study is to define pathways that can stimulate endogenous cardiac progenitor cells to produce more cardiomyocytes. Future studies will employ strategies to enhance the proliferation and differentiation of eCPCs to improve cardiac regeneration.

Public Health Relevance

Heart failure is a growing medical problem for which medical therapies provide no real cure. The goal of this research proposal is to identify strategies to enhance new cardiomyocyte formation. If we can increase the number of cardiomyocytes in the heart, we might be able to prevent or revert heart failure.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL130072-01
Application #
9003552
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Wong, Renee P
Project Start
2015-12-16
Project End
2020-10-31
Budget Start
2015-12-16
Budget End
2016-10-31
Support Year
1
Fiscal Year
2016
Total Cost
$380,000
Indirect Cost
$130,000
Name
University of Minnesota Twin Cities
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Gude, Natalie A; Firouzi, Fareheh; Broughton, Kathleen M et al. (2018) Cardiac c-Kit Biology Revealed by Inducible Transgenesis. Circ Res 123:57-72
Shaklee, Jessica; Srivastava, Kriti; Brown, Heather et al. (2018) Development of a Click-Chemistry Reagent Compatible with Mass Cytometry. Sci Rep 8:6657
Chen, Zhongming; Zhu, Wuqiang; Bender, Ingrid et al. (2017) Pathologic Stimulus Determines Lineage Commitment of Cardiac C-kit+ Cells. Circulation 136:2359-2372
Luongo, Timothy S; Lambert, Jonathan P; Gross, Polina et al. (2017) The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature 545:93-97
Yellamilli, Amritha; van Berlo, Jop H (2016) The Role of Cardiac Side Population Cells in Cardiac Regeneration. Front Cell Dev Biol 4:102
van Berlo, Jop H; Molkentin, Jeffery D (2016) Most of the Dust Has Settled: cKit+ Progenitor Cells Are an Irrelevant Source of Cardiac Myocytes In Vivo. Circ Res 118:17-9