Hospitalshaverapidlyadoptedtheuseofelectronicmedicalrecords(EMR)forroutinemanagementandreportingof patienthealthcareutilization.InspiteofthecomprehensivedatacollectedinEMRs,theyhavenotrealizedtheir potentialforconductingroutinesurveillanceofqualitymeasures,formeasuringhospitalperformance,orfor surveillanceofpatientsafety.TheuseofEMRsforpatientsafetysurveillanceandforpredictiveanalyticshasbeen underutilizedespeciallyforacutemyocardialinfarction(AMI).Reasonsforthisunderuseincludefragmentationofdata entryandstorage,poorcomplianceincompletingstructuredfieldsforqualityreporting,andtheabundanceof unstructuredinformationdescribedinnarrativenotes.Weproposetodeveloparobustautomatedsurveillancetoolkit builtintwoindependentEMRswithexternalvalidationinmultipleEMRs.Wewillcombinetherichinformationlocked inclinicalnoteswithstructureddatatoquantifytheriskforreadmissionafteranAMIdirectlyfromtheEMR,validate, anddemonstrateitsportabilityacrossinstitutionstootherEMRs.Ouroverallhypothesisisthataddingstructured variablesfromtheEMRwithNLP-derivedvariableswillimproveourabilitytopredict30-dayreadmissionfromAMI. Wewillevaluatethishypothesisbymappingrelevantvariablestocommoninformationmodels,developingand validatingpredictionmodelsforAMI,andcreatingandvalidatingaportabletoolkitforgeneratingpredictivemodels frommultipleEMRsinthefollowingspecificaims:1)ToevaluatepotentialAMIriskfactorsfor30-dayreadmission fromAMItoacommoninformationmodelusingstructuredEMRvariablesandnovelNLPvariablesextractedfrom EMRtext;?2)Todevelopanoptimalpredictionmodelfor30-dayreadmissionfromAMIateachsiteusingregistrydata, structuredEMR,andnovelsocialNLPvariablesextractedfromunstructuredEMRtextandtocross-validateeach modelatanotherinstitution;?3)Tovalidateanautomatedsurveillancetoolkit(ReX)forportabilitytothreeotherEMRs. ThisresearchissignificantinthatitwillimproveourabilitytoidentifyAMIpatientsatriskof30-dayreadmission, identifyriskforcausesofreadmissionforactionableinterventionbeforereadmissionoccurs,andforthefirsttime provideavalidatedportablesurveillancetoolkit.Ourresearchisinnovative,becauseitexpandstheuseofNLPtools tonovelvariablespreviouslyonlyobtainedthroughmanualextraction(e.g.,socialriskfactors)anddevelopsa generalizableandportabletoolkitbuiltinparallelontwoindependentEMRswithexternalvalidationinmultipleEMRs. Wewillshifttheparadigmfromcurrentsingle-centerapproachestoa2-centerparalleldevelopmentandcross- validationmethodallowingfornovelinformationevaluationandsystematicdifferencesindatarepresentationbetween thetwoinstitutionsandadaptingourportabletoolkitaccordingly.Wewillsignificantlyadvancebiomedicalinformatics tooldevelopmentandourabilitytoperformriskassessmentforAMIpatients,enablingimprovedclinicalcareand improvedpatientoutcomes.
Theproposedresearchwilldevelopaportableandexternallyvalidatedtoolkitforextractingcomplexinformationfrom theelectronicmedicalrecordaboutpatienthealthandhealthcarefactorsthatpredicttheriskofreturningtothe hospitalforanotherstay.Thetoolsdevelopedinthisresearchwilladvancethefieldsofhealthinformationtechnology, computerscienceandhealthcaredeliverysciencewhileassistinghealthcareprofessionalswithtoolstoimprove patientcareandsafety.Thesemethodswillbetranslatedintootherreasonsforhospitalstaystohelphealthcare workersmaximizepatientsafetyandhealthafterpatientsleavethehospitalwhilereducinghealthcarecostsin preventingunnecessaryhospitalstays.
Rosenbloom, S T; Carroll, R J; Warner, J L et al. (2017) Representing Knowledge Consistently Across Health Systems. Yearb Med Inform 26:139-147 |
Caracciolo, Chris; Parker, Devin; Marshall, Emily et al. (2017) Excess Readmission vs Excess Penalties: Maximum Readmission Penalties as a Function of Socioeconomics and Geography. J Hosp Med 12:610-617 |
Brown, Jeremiah R; Chang, Chiang-Hua; Zhou, Weiping et al. (2014) Health system characteristics and rates of readmission after acute myocardial infarction in the United States. J Am Heart Assoc 3:e000714 |
Brown, Jeremiah R; Conley, Sheila M; Niles 2nd, Nathaniel W (2013) Predicting readmission or death after acute ST-elevation myocardial infarction. Clin Cardiol 36:570-5 |