Ann M. Schreihofer Obesity impairs short-term regulation of mean arterial pressure (MAP) by autonomic reflexes, contributing to the destabilization of MAP. Independent of hypertension, increased variability of MAP is a major risk factor for end organ damage and stroke. Treatments that ameliorate hypertension but not elevated variability of MAP leave patients at risk for adverse cardiovascular outcomes. This project uses obese Zucker rats (OZR) to determine cellular and systemic mechanisms that produce altered autonomic reflexes in the setting of metabolic syndrome. Like obese humans, adult OZR become hyperinsulinemic with poor glycemic control. They also develop sympathetically-driven hypertension with diminished baroreflex control of sympathetic nerve activity (SNA) and heart rate (HR) compared to lean Zucker rats. Other sympatho-inhibitory reflexes processed through the nucleus tractus solitarius (NTS) are also impaired in adult OZR, coincident with the development of reduced physiological responses to glutamatergic activation of the NTS. In contrast, glutamatergic activation of the rostral ventrolateral medulla (RVLM) produces enhanced physiological responses coincident with the onset of augmented sympatho-excitatory reflexes. This latter condition occurs independent of impaired baroreflexes and also increases MAP variability. Amelioration of hypertension or impaired glycemic control in adult male OZR each partially restores baroreflex control of HR, although the fates of NTS function and other sympatho- inhibitory reflexes are not known. Furthermore, whether these treatments also dampen augmented RVLM activation and sympatho-excitatory reflexes is unknown. Female OZR develop metabolic syndrome, but impaired baroreflexes emerge later, well beyond the development of hypertension. The efficacy of treatments used in males and the functions of NTS, RVLM, and other sympathetic reflexes are unknown in female OZR. Central hypotheses: In male OZR, poor glycemic control dampens glutamatergic activation of NTS neurons receiving vagal inputs to impair sympatho-inhibitory reflexes, and this state is exacerbated by hypertension. Further, we hypothesize that simultaneous ingestion of excess salt with hyperphagia augments glutamatergic activation of the RVLM to yield exaggerated sympatho-excitatory reflexes that could further destabilize MAP. Although female rats may develop salt-induced sensitization of the RVLM, we hypothesize estrogen enhances NTS function to combat impairment of sympatho-inhibitory reflexes in early stages of metabolic syndrome. We propose to determine how obesity impacts responses of individually recorded NTS and RVLM neurons to inputs from the periphery and forebrain in male and female OZR compared to age-matched LZR. We will also determine whether reducing salt intake, poor glycemic control, or MAP alters NTS and RVLM function coincident with restoration of sympathetic reflexes in OZR. This project will provide novel insights into obesity- related autonomic deficits and determine whether standard treatments for hypertension and hyperglycemia are adequate to restore altered brainstem function and sympathetic reflexes that are not evaluated in the clinic.

Public Health Relevance

Ann M. Schreihofer PUBLIC HEALTH RELEVANCE: Obesity and metabolic syndrome affect greater than one third of the US population and are associated with impaired short-term control of blood pressure by autonomic reflexes via unknown mechanisms. Compromised autonomic reflexes, such as the baroreflex, increase the variability of blood pressure, which is a significant independent risk factor for adverse cardiovascular outcomes. This project proposes to unravel cellular and systemic mechanisms that contribute to altered autonomic reflexes and to determine whether current treatments for attributes of metabolic syndrome are adequate for restoring short-term regulation of blood pressure to minimize risk of detrimental cardiovascular incidents.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL132568-04
Application #
9991893
Study Section
Hypertension and Microcirculation Study Section (HM)
Program Officer
OH, Youngsuk
Project Start
2017-07-01
Project End
2021-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
4
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of North Texas
Department
Internal Medicine/Medicine
Type
Graduate Schools
DUNS #
110091808
City
Fort Worth
State
TX
Country
United States
Zip Code
76107