Circadian clocks shift later (delay) with the progression of puberty; this shift contributes to late sleep onsets in older adolescents. Early school start times, however, force teenagers awake earlier than their spontaneous wake time and the opportunity for sleep shortens. Indeed, a majority of adolescents in the U.S. are chronically sleep deprived, getting 1- 2 h less sleep than recommended. Also, many adolescents wake for school at the ?wrong? circadian time. Chronic circadian misalignment and sleep restriction are at their peak during late adolescence, and are associated with morning daytime sleepiness, poor academic performance, conduct problems, depressed mood, suicidal ideation, substance use, and obesity. Morning bright light exposure from light boxes can shift rhythms earlier (phase advance) to facilitate earlier sleep onset, and reduce circadian misalignment and the associated risks. We constructed the first phase response curve (PRC) to light for adolescents and determined that the optimal time for bright light exposure to produce phase advances was ~1 h before habitual wake and light should be avoided around the time of habitual bedtime because it causes rhythms to shift later (delay). Studies of adults, however, indicate that restricted sleep and exposure to evening light due to late bedtimes ? two classic features of older adolescent sleep ? make morning bright light less effective in producing advances. Our pilot data in adolescents mimic this finding, but also suggest that staying awake late in normal household lighting and the subsequent sleep restriction before and during a 3-day morning bright light regimen, can shift the system in the wrong direction (phase delay). The overarching goal of this proposal is to examine the DOSE of sleep restriction and evening household light that prevents the desired phase advance to morning bright light in adolescents aged 14-17 years. Study 1 proposes to construct a sleep restriction with normal household evening light dose-response curve to determine the point at which morning bright light begins to lose its effectiveness. Following a baseline week with 10-h sleep opportunities, participants will keep the same wake time but be randomly assigned to one of 4 bedtimes which will be the same or later than baseline to produce 4 levels of sleep restriction with evening light (0, 1.5, 3, or 4.5 h). After 2 nights, we will gradually shift the sleep schedule earlier for 3 nights, and participants will receive bright light each morning. We hypothesize that the circadian system will advance with sufficient sleep, but with increasing sleep restriction/evening light, circadian rhythms will not shift or will delay despite the phase advancing morning bright light. Study 2 will test whether attenuating evening light exposure by wearing sunglasses before bedtime during sleep restriction can facilitate phase advances. Study 2 will test the same 4 ?doses? of sleep restriction. The main outcome measures to build the dose-response curves will be phase shifts of the central circadian clock marked by the dim light melatonin onset (DLMO) and total sleep time measured from wrist actigraphy in the laboratory. Secondary outcomes include cognitive performance, sleepiness, and mood.

Public Health Relevance

This project will provide recommendations to health care providers, as well as adolescents and their parents to improve efficacy of circadian-based treatment strategies aimed to help youngsters fall asleep early, increase school-night sleep duration, and improve morning alertness. Enhancing these outcomes will likely improve learning capacity and problem-solving, as well as reduce the risk of depressed mood, obesity, automobile accidents, alcohol or drug use, and other risk-taking behavior.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL146772-01A1
Application #
9881615
Study Section
Neural Basis of Psychopathology, Addictions and Sleep Disorders Study Section (NPAS)
Program Officer
Brown, Marishka
Project Start
2020-04-01
Project End
2025-02-28
Budget Start
2020-04-01
Budget End
2021-02-28
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Rush University Medical Center
Department
Other Clinical Sciences
Type
Schools of Medicine
DUNS #
068610245
City
Chicago
State
IL
Country
United States
Zip Code
60612