The long term goal of our ongoing project, """"""""Discovering and applying knowledge in clinical databases"""""""", is to learn from data in the electronic health record (EHR) and to apply that knowledge to relevant problems. The increasing adoption of the EHR promises to provide data for clinical research and informatics research, but secondary use of the data has been limited. Challenges include the complexity, incompleteness, and inaccuracy of the record. We propose to study the EHR from an information theoretic point of view, treating the EHR as a natural object worthy of study, and applying methods from non-linear time series analysis. Armed with a better understanding of the record, we hope to measure and account for data completeness and to improve interpretation and use of the data. We hypothesize that we can characterize an electronic health record using a formal information theoretic framework, and that the measured properties can help answer informatics and clinical questions.
Our aims are to (1) develop an information theoretic framework for characterizing the electronic health record, (2) use the information theoretic framework to study EHR and sampling issues, and (3) use the framework and traditional data mining to answer clinical and informatics questions. We will approach the EHR as a complex time series and characterize the information in the record using univariate sequential mutual information (the degree to which observations of a variable predict future observations) and a network of pair-wise mutual information among all variables, discreet and continuous. The result will be a measure of the predictability of the record and a set of associations among clinical features. We will use the predictability results to study the completeness of a patient's record, the appropriateness of a clinician's sampling rate, outlier data points, and changes in patient acuity. We will use predictability and associations to link narrative abstractions with their primary data, to interpret narrative modifiers, to cluster terms, to find associations (in the context of phenome-wide association studies), and to carry out exploratory analyses of defining phenotype profiles and of mutual information-based surveillance.

Agency
National Institute of Health (NIH)
Institute
National Library of Medicine (NLM)
Type
Research Project (R01)
Project #
5R01LM006910-11
Application #
7938920
Study Section
Biomedical Library and Informatics Review Committee (BLR)
Program Officer
Sim, Hua-Chuan
Project Start
2000-04-01
Project End
2013-09-29
Budget Start
2010-09-30
Budget End
2011-09-29
Support Year
11
Fiscal Year
2010
Total Cost
$386,810
Indirect Cost
Name
Columbia University (N.Y.)
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Polubriaginof, Fernanda C G; Vanguri, Rami; Quinnies, Kayla et al. (2018) Disease Heritability Inferred from Familial Relationships Reported in Medical Records. Cell 173:1692-1704.e11
Sottile, Peter D; Albers, David; Higgins, Carrie et al. (2018) The Association Between Ventilator Dyssynchrony, Delivered Tidal Volume, and Sedation Using a Novel Automated Ventilator Dyssynchrony Detection Algorithm. Crit Care Med 46:e151-e157
Schuemie, Martijn J; Ryan, Patrick B; Hripcsak, George et al. (2018) Improving reproducibility by using high-throughput observational studies with empirical calibration. Philos Trans A Math Phys Eng Sci 376:
Sottile, Peter D; Albers, David; Moss, Marc M (2018) Neuromuscular blockade is associated with the attenuation of biomarkers of epithelial and endothelial injury in patients with moderate-to-severe acute respiratory distress syndrome. Crit Care 22:63
Vilar, Santiago; Friedman, Carol; Hripcsak, George (2018) Detection of drug-drug interactions through data mining studies using clinical sources, scientific literature and social media. Brief Bioinform 19:863-877
Ta, Casey N; Dumontier, Michel; Hripcsak, George et al. (2018) Columbia Open Health Data, clinical concept prevalence and co-occurrence from electronic health records. Sci Data 5:180273
Grossman, Lisa V; Mitchell, Elliot G; Hripcsak, George et al. (2018) A method for harmonization of clinical abbreviation and acronym sense inventories. J Biomed Inform 88:62-69
Schuemie, Martijn J; Hripcsak, George; Ryan, Patrick B et al. (2018) Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data. Proc Natl Acad Sci U S A 115:2571-2577
Levine, Matthew E; Albers, David J; Hripcsak, George (2018) Methodological variations in lagged regression for detecting physiologic drug effects in EHR data. J Biomed Inform 86:149-159
Albers, D J; Elhadad, N; Claassen, J et al. (2018) Estimating summary statistics for electronic health record laboratory data for use in high-throughput phenotyping algorithms. J Biomed Inform 78:87-101

Showing the most recent 10 out of 120 publications