Program Director/Principal Investigator {Last, First, Middle): Wiens, Jenna PROJECT SUMMARY {See instructions): The ability to rapidly match the right patients to the right treatments at the right time is critical to ensuring patients receive high quality care. The vast majority of machine learning applications in healthcare focus on diagnosing or stratifying patients for a particular outcome. In contrast, reinforcement learning (RL) aims to learn how clinical states (i.e., sets of signs, symptoms, and test results) respond to specific sequences of treatments, with the goal of optimizing clinical outcomes. RL does not aim to diagnose, but infers diagnosis based on a patient's response to specific treatments--in many ways mimicking how clinicians operate in practice. This proposal will develop a novel clinician-in-the-loop reinforcement learning (RL) framework that analyzes electronic health record (EHR) clinical time-series data to support physician decision making, iteratively providing physicians the estimated outcome of potential treatment strategies. Our topic of focus for this work is the evaluation and treatment of patients hospitalized with acute dyspnea (shortness of breath) and signs of impending respiratory failure. Acute dyspnea is an ideal condition for an RL approach, since it can be due to three overlapping conditions: congestive heart failure, chronic obstructive pulmonary disease and pneumonia. Determining optimal treatment for these patients is clinically difficult, as a patient's presentation is frequently ambiguous, rapidly changing, and often due to multiple causes. Inappropriate treatment may occur in up to a third of patients leading to increased mortality. While developing this RL framework, we will also develop methods to learn more useful representations of high-dimensional clinical time-series data to improve the efficiency of RL model training. In addition, given the challenges of working with observational health data, we will develop new methods for evaluation of learned policies and develop new theory to better understand the limitations of RL using observational data. The project has four aims: 1) create a shareable, de-identified EHR time-series dataset of 35,000 patients with acute dyspnea, 2) develop techniques for exploiting invariances In tasks involving clinical time-series data to improve the efficiency of RL model training, 3) develop and evaluate an RL-based framework for learning optimal treatment policies for acute dyspnea, and 4) prospectively validate the learned treatment model. This research will result in new techniques for learning representations from time-series data and will study both the theoretical and practical limitations of RL using observational clinical data, leading to key advancements in ML and RL for clinical care. The tools developed for clinical decision support in this proposal have the potential for high impact because of their ability to generalize beyond the problem studied here to other conditions, laying the groundwork for clinical systems that directly impact society by aiding in the timely and appropriate treatment of patients. HELEVANGE (See instructions): Hospitalization for sudden and severe shortness of breath (acute dyspnea) affects almost 2 million patients in the US each year. Such patients can be difficult to treat, as their presentation may ambiguous, due to multiple causes that change over time and require different types of therapies/treatments. In this proposal, we will develop novel reinforcement-learning based approaches to quickly match patients to the best treatment based on his/her symptoms over time. The proposed work could have a significant impact on health by shortening lhe time to appropriate treatments, leading to improved patient outcomes. D

Agency
National Institute of Health (NIH)
Institute
National Library of Medicine (NLM)
Type
Research Project (R01)
Project #
1R01LM013325-01
Application #
9927810
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Sim, Hua-Chuan
Project Start
2019-09-10
Project End
2023-07-31
Budget Start
2019-09-10
Budget End
2020-07-31
Support Year
1
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Engineering (All Types)
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109