This revised application requests three years of funding to support a research program which employs proton magnetic resonance spectroscopic imaging (MRSI) to evaluate subjects with Bipolar I Disorder and healthy comparison subjects. In pilot studies of individuals with bipolar disorder, we have used 1H MRSI to evaluate brain cytosolic choline levels and, more recently, myo-inositol levels. Both choline and myo-inositol play critical roles in second messenger signaling cascades and recent reviews have suggested that mood stabilizes may demonstrate their clinical effects by altering signal transduction pathways within the brain. Studies will be conducted at two sites, the McLean Hospital Brain Imaging Center in Belmont, MA, and the University of Washington in Seattle, WA. Over the course of this project, a total of 72 subjects with bipolar disorder and 42 comparison subjects will be enrolled and complete repeated MRSI studies. Identical clinical assessments and MRSI protocols will be employed at both sites. Bipolar subjects will be placed on standardized formulations of lithium or valproic acid and will be followed clinically at two week intervals for the ten week duration of the study. By evaluating subjects who are receiving two alternative treatments, we will be able to assess both the shared and unique effects of these pharmacologically effective medications on brain chemistry and the relationship of these effects on mood. Patients with bipolar disorder will be scanned on three occasions at weeks 2,6, and 10 of this study. Mood at time of each scan will be assessed using the Young Mania Rating Scale and the Hamilton Depression Rating Scale. A priori regions of interest for this study will include the bilateral caudate nuclei and the anterior cingulate cortex, as pilot studies suggest that these brain regions demonstrate mood state, medication, and diagnosis dependent alteration in choline and myo-inositol resonance intensities. MRSI data from bipolar subjects will be compared to similar data from 42 healthy comparison subjects. We believe that abnormalities in brain choline and myo-inositol metabolism may, in part, mediate the pathophysiology of abnormal mood in bipolar disorder and that the therapeutic efficacy of lithium may derive from an inhibition of choline transport and/or from changes in myo-inoitol and choline metabolism within the brain. The results of these studies may provide important new insights into the neurochemical alterations which mediate the symptoms of bipolar disorder as well as information relevant to the development of novel therapeutic strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH058681-02
Application #
6186273
Study Section
Special Emphasis Panel (ZRG1-BDCN-1 (07))
Program Officer
Brady, Linda S
Project Start
1999-09-01
Project End
2002-05-31
Budget Start
2000-06-01
Budget End
2001-05-31
Support Year
2
Fiscal Year
2000
Total Cost
$409,893
Indirect Cost
Name
Mc Lean Hospital (Belmont, MA)
Department
Type
DUNS #
City
Belmont
State
MA
Country
United States
Zip Code
02478
Aydin, Burç; Yurt, Ay?egül; Gökmen, Necati et al. (2016) Trait-related alterations of N-acetylaspartate in euthymic bipolar patients: A longitudinal proton magnetic resonance spectroscopy study. J Affect Disord 206:315-320
Yildiz, Ay?egül; Aydin, Burç; Gökmen, Necati et al. (2016) Antimanic Treatment With Tamoxifen Affects Brain Chemistry: A Double-Blind, Placebo-Controlled Proton Magnetic Resonance Spectroscopy Study. Biol Psychiatry Cogn Neurosci Neuroimaging 1:125-131
Shi, Xian-Feng; Carlson, Paul J; Sung, Young-Hoon et al. (2015) Decreased brain PME/PDE ratio in bipolar disorder: a preliminary (31) P magnetic resonance spectroscopy study. Bipolar Disord 17:743-52
Plante, David T; Trksak, George H; Jensen, J Eric et al. (2014) Gray matter-specific changes in brain bioenergetics after acute sleep deprivation: a 31P magnetic resonance spectroscopy study at 4 Tesla. Sleep 37:1919-27
Shi, Xian-Feng; Carlson, Paul J; Kim, Tae-Suk et al. (2014) Effect of altitude on brain intracellular pH and inorganic phosphate levels. Psychiatry Res 222:149-56
Harper, David G; Jensen, J Eric; Ravichandran, Caitlin et al. (2014) Tissue-specific differences in brain phosphodiesters in late-life major depression. Am J Geriatr Psychiatry 22:499-509
Harper, David G; Plante, David T; Jensen, J Eric et al. (2013) Energetic and cell membrane metabolic products in patients with primary insomnia: a 31-phosphorus magnetic resonance spectroscopy study at 4 tesla. Sleep 36:493-500
Brennan, Brian P; Jensen, John Eric; Hudson, James I et al. (2013) A placebo-controlled trial of acetyl-L-carnitine and ?-lipoic acid in the treatment of bipolar depression. J Clin Psychopharmacol 33:627-35
Allen, Patricia J; D'Anci, Kristen E; Kanarek, Robin B et al. (2012) Sex-specific antidepressant effects of dietary creatine with and without sub-acute fluoxetine in rats. Pharmacol Biochem Behav 101:588-601
Lyoo, In Kyoon; Yoon, Sujung; Kim, Tae-Suk et al. (2012) A randomized, double-blind placebo-controlled trial of oral creatine monohydrate augmentation for enhanced response to a selective serotonin reuptake inhibitor in women with major depressive disorder. Am J Psychiatry 169:937-945

Showing the most recent 10 out of 48 publications