The long term goal of this research is to test the hypothesis that voltage-gated Na+ channel (Nav1) beta subunits are cell adhesion molecules (CAMs) that communicate between extra- and intra-cellular signaling molecules and cytoskeletal proteins. beta1 subunits are multifunctional molecules that participate in modulation of Nav1 kinetics, in extracellular matrix interactions resulting in cellular migration, in homophilic cell adhesion resulting in cytoskeletal recruitment, in heterophilic cell adhesive interactions resulting in stabilization of Nav1 complexes at the cell surface, and in neurite outgrowth from cerebellar granule neurons. beta1 can be tyrosine phosphorylated, resulting in its differential subcellular localization in cardiac myocytes. Finally, beta1 subunits contribute to the regulation of neurpnal excitability as evidenced by the effects of beta1C121W in GEFS+1 epilepsy and the severe epileptic phenotype observed in beta1 (-/-) mice. This laboratory was the first to characterize the beta subunits as CAMs and, in doing so, initiated an entirely new field in Nav1 biology. It is proposed that Nav-beta1 subunits, as CAMs, not only play important roles in cell-cell and cell- matrix adhesion, but also modulate intracellular signaling in neurons as a result of these interactions. Furthermore, it is proposed that tyrosine phosphoryation of beta1 regulates its differential subcellular targeting to differential subcellular domains in neurons and thus determines the availability of beta1 to associate with cytoskeletal and signaling molecules in those domains. The following specific aims are designed to test this hypothesis: 1. To investigate the mechanism of beta1- mediated neurite outgrowth from cerebellar granule neurons. 2. To determine the domains of beta1 that are required to mediate neurite outgrowth and to investigate whether deletion of the beta1 gene results in differences in neurite outgrowth in vivo by investigating the migration and neurite extension of corticospinal axons and cerebellar granule cells in beta1-/- mice. 3. To test the hypothesis that beta1 contains a tyrosine-based targeting domain that includes beta1Y181 and that phosphorylation of this residue results in differential localization of pYbeta1 to ankyrin-independent subcellular domains in neurons. The overall goal of this research is to investigate the novel idea that Nav1 beta subunits are not only channel modulators but also act to initiate signal transduction cascades as a result of cell adhesive interactions. A beta1 mutation that causes epilepsy in humans, beta1C121W, not only disrupts beta1-mediated channel modulation but also disrupts beta1-mediated cell adhesion. Thus, as genetic mutations that affect L1-CAM-mediated cell adhesion result in severe neurological defects such as hydrocephaly and mental retardation, it is proposed that human mutations that result in disruption of Nav1 beta subunit-mediated cell adhesion may also result in neurological disease, including epilepsy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH059980-09
Application #
7778942
Study Section
Neurodifferentiation, Plasticity, and Regeneration Study Section (NDPR)
Program Officer
Asanuma, Chiiko
Project Start
2000-03-01
Project End
2011-02-28
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
9
Fiscal Year
2010
Total Cost
$303,973
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Pharmacology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Liu, Yu; Lopez-Santiago, Luis F; Yuan, Yukun et al. (2013) Dravet syndrome patient-derived neurons suggest a novel epilepsy mechanism. Ann Neurol 74:128-39
Patino, Gustavo A; Brackenbury, William J; Bao, Yangyang et al. (2011) Voltage-gated Na+ channel ?1B: a secreted cell adhesion molecule involved in human epilepsy. J Neurosci 31:14577-91
Sato, Priscila Y; Coombs, Wanda; Lin, Xianming et al. (2011) Interactions between ankyrin-G, Plakophilin-2, and Connexin43 at the cardiac intercalated disc. Circ Res 109:193-201
Brackenbury, William J; Isom, Lori L (2011) Na Channel ? Subunits: Overachievers of the Ion Channel Family. Front Pharmacol 2:53
Lopez-Santiago, Luis F; Brackenbury, William J; Chen, Chunling et al. (2011) Na+ channel Scn1b gene regulates dorsal root ganglion nociceptor excitability in vivo. J Biol Chem 286:22913-23
Brackenbury, William J; Calhoun, Jeffrey D; Chen, Chunling et al. (2010) Functional reciprocity between Na+ channel Nav1.6 and beta1 subunits in the coordinated regulation of excitability and neurite outgrowth. Proc Natl Acad Sci U S A 107:2283-8
Patino, Gustavo A; Isom, Lori L (2010) Electrophysiology and beyond: multiple roles of Na+ channel ? subunits in development and disease. Neurosci Lett 486:53-9
O'Malley, Heather A; Park, Yanghae; Isom, Lori L et al. (2010) PKCbeta co-localizes with the dopamine transporter in mesencephalic neurons. Neurosci Lett 480:40-3
McEwen, Dyke P; Chen, Chunling; Meadows, Laurence S et al. (2009) The voltage-gated Na+ channel beta3 subunit does not mediate trans homophilic cell adhesion or associate with the cell adhesion molecule contactin. Neurosci Lett 462:272-5
Aman, Teresa K; Grieco-Calub, Tina M; Chen, Chunling et al. (2009) Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels. J Neurosci 29:2027-42

Showing the most recent 10 out of 32 publications