The goal of this research is to understand how allosteric modulators of glutamate receptors exert their actions. Glutamate is the primary excitatory neurotransmitter in the brain, and the actions of glutamate receptors underlie normal and pathophysiological brain function. Drugs that specifically enhance or diminish glutamate receptor activity have potential for treating cognitive impairment following stroke, brain injury or neurodegenerative disease. We have identified two classes of positive allosteric modulators: one that slows channel closing (deactivation) and another that slows entry into the desensitized state. We will use a prototypical modulator of deactivation (l-BCP) and of desensitization (cyclothiazide, CTZ) to dissect the molecular mechanism of allosteric modulation. Two potential drug-binding sites have been identified for ANPA receptors, but it is not known whether these sites represent a true drug-binding site, or domains that regulate receptor conformations which secondarily affect drug modulation. We will use site-directed mutagenesis and patch-clamp electrophysiology to determine the extent to which perturbation of each site alters the efficacy of CTZ or l-BcP, or alters gating kinetics in the absence of any drug. Our hypotheses state that one of the identified sites (Site I) is not a drug-binding site, but rather regulates allosteric transitions that affect drug sensitivity secondarily; and, that the second site (Site II) represents the CTZ binding site. Mutations of each site will be tested for control kinetics of deactivation and desensitization, and then for slowing of either deactivation or desensitization in the presence of CTZ or l-ECP. The results from these experiments will allow us to determine if either of these sites is a good candidate for a drug-binding site, and if so, what the important chemical aspects of the site are with respect to activity. The results from these experiments will permit the rational design of modulatory drugs with improved selectivity and potency, as well as contributing to our understanding of the fundamental processes underlying glutamate receptor gating.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MDCN-5 (01))
Program Officer
Brady, Linda S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Colorado State University-Fort Collins
Schools of Veterinary Medicine
Fort Collins
United States
Zip Code
Partin, Kathryn M (2015) AMPA receptor potentiators: from drug design to cognitive enhancement. Curr Opin Pharmacol 20:46-53
Weeks, Autumn M; Harms, Jonathan E; Partin, Kathryn M et al. (2014) Functional insight into development of positive allosteric modulators of AMPA receptors. Neuropharmacology 85:57-66
Harms, Jonathan E; Benveniste, Morris; Kessler, Markus et al. (2014) A charge-inverting mutation in the ""linker"" region of ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors alters agonist binding and gating kinetics independently of allosteric modulators. J Biol Chem 289:10702-14
Harms, Jonathan E; Benveniste, Morris; Maclean, John K F et al. (2013) Functional analysis of a novel positive allosteric modulator of AMPA receptors derived from a structure-based drug design strategy. Neuropharmacology 64:45-52
Timm, David E; Benveniste, Morris; Weeks, Autumn M et al. (2011) Structural and functional analysis of two new positive allosteric modulators of GluA2 desensitization and deactivation. Mol Pharmacol 80:267-80
Bedoukian, Matthew A; Weeks, Autumn M; Partin, Kathryn M (2006) Different domains of the AMPA receptor direct stargazin-mediated trafficking and stargazin-mediated modulation of kinetics. J Biol Chem 281:23908-21
Leever, J Duncan; Clark, Suzanne; Weeks, Autumn M et al. (2003) Identification of a site in GluR1 and GluR2 that is important for modulation of deactivation and desensitization. Mol Pharmacol 64:5-10