Over the past grant cycle, general rules for calmodulin (CaM) regulation of the family of Ca channels were discerned. CaM has two lobes, each with two Ca2+ binding sites. A first general aspect was that each lobe can autonomously trigger a form of channel regulation. Secondly, whenever the C-terminal lobe of CaM (C-lobe) triggers channel regulation, there is preferential responsiveness to local Ca2+ signals. Conversely, wherever the N-terminal lobe (N-lobe) initiates regulation, there is selectivity for global Ca2+ signals. Thirdly, there is reason to expect that this rule of operation generalizes beyond Ca channels, to many complexes in which CaM is preassociated with target molecules. Because CaM regulation of Ca channels (and other signaling molecules) is crucial for normal neuroprocessing, and likely important for therapeutics relating to pain, psychosis, and cardiac arrhythmogenesis, answering how these general rules occur is the overarching thrust for the next cycle of research.
Three aims will address this overall theme. 1. To develop and perform elementary tests of a kinetic Ca2+ decoding mechanism for the CaM/Ca channel complex.
This aim formulates a 'kinetic Ca2+ decoding'theory of how the CaM decoding occurs, and devises novel Voltage-block'experiments to enable elementary tests of this theory. 2. To engineer the local/global Ca2+ preference of CaM/Ca channel regulation, as a higher-order test of the kinetic Ca2+ decoding theory, and as means to glean design principles for developing novel channel modulators. A principal prediction of the kinetic Ca2+ decoding theory is that the local/global Ca2+ preference of channel regulation reflects competition between channel affinities for the Ca2+-bound and Ca2+-free forms of a lobe of CaM.
Aim 2 will alter these affinities and check for the predicted changes in Ca2+ preference.
Aim 2 will also explore whether these modifications can inform the design of drug compounds that modulate channel regulation in new ways. 3. To experimentally determine Ca2+ concentrations and diffusion within the nanometers of the Ca channel. Crucial to the next phase of progress is the direct measurements of local and global Ca2+ concentration signals, and Ca2+ diffusion, in the actual channel 'nanodomain'environment. Fusions of a genetically-encoded Ca2+ sensor (TNL-15) to channels, combined with TIRF microscopy promise to reveal these long sought-after entities.
These aims promise bold progress, with basic and applied ramifications.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Neurotransporters, Receptors, and Calcium Signaling Study Section (NTRC)
Program Officer
Asanuma, Chiiko
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Biomedical Engineering
Schools of Medicine
United States
Zip Code
Niu, Jacqueline; Yang, Wanjun; Yue, David T et al. (2018) Duplex signaling by CaM and Stac3 enhances CaV1.1 function and provides insights into congenital myopathy. J Gen Physiol 150:1145-1161
Limpitikul, Worawan B; Viswanathan, Meera C; O'Rourke, Brian et al. (2018) Conservation of cardiac L-type Ca2+ channels and their regulation in Drosophila: A novel genetically-pliable channelopathic model. J Mol Cell Cardiol 119:64-74
Niu, Jacqueline; Dick, Ivy E; Yang, Wanjun et al. (2018) Allosteric regulators selectively prevent Ca2+-feedback of CaV and NaV channels. Elife 7:
Banerjee, Rahul; Yoder, Jesse B; Yue, David T et al. (2018) Bilobal architecture is a requirement for calmodulin signaling to CaV1.3 channels. Proc Natl Acad Sci U S A 115:E3026-E3035
Limpitikul, Worawan B; Greenstein, Joseph L; Yue, David T et al. (2018) A bilobal model of Ca2+-dependent inactivation to probe the physiology of L-type Ca2+ channels. J Gen Physiol 150:1688-1701
Limpitikul, Worawan B; Dick, Ivy E; Tester, David J et al. (2017) A Precision Medicine Approach to the Rescue of Function on Malignant Calmodulinopathic Long-QT Syndrome. Circ Res 120:39-48
Issa, John B; Haeffele, Benjamin D; Young, Eric D et al. (2017) Multiscale mapping of frequency sweep rate in mouse auditory cortex. Hear Res 344:207-222
Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun et al. (2016) Arrhythmogenesis in Timothy Syndrome is associated with defects in Ca(2+)-dependent inactivation. Nat Commun 7:10370
Limpitikul, Worawan B; Dick, Ivy E; Ben-Johny, Manu et al. (2016) An autism-associated mutation in CaV1.3 channels has opposing effects on voltage- and Ca(2+)-dependent regulation. Sci Rep 6:27235
Lee, Shin-Rong; Sang, Lingjie; Yue, David T (2016) Uncovering Aberrant Mutant PKA Function with Flow Cytometric FRET. Cell Rep 14:3019-29

Showing the most recent 10 out of 28 publications