Recent molecular genetics studies implicate neuregulin 1 (NRG1) and its receptor, erbB, in the pathophysiology of schizophrenia. Among NRG 1 receptors, erbB4 is of particular interest because of its crucial roles in neurodevelopment and in modulation of N-methyl-D-aspartate (NMDA) receptor signaling. We have recently examined the expression and transduction of the NRG1- erbB4 mechanism in the postmortem brains of schizophrenia and control subjects. Using a novel postmortem tissue stimulation approach, we found striking alterations of NRG1- erbB4 signaling in the prefrental cortex of schizophrenia subjects. First, NRG1-induced erbB4 activation, measured by tyrosine phosphorylation of erbB4 and its association with PSD-95, was dramatically enhanced, while the expression levels of NRG1 or erbB4 were not altered. Second, the association of erbB4 with PSD-95 and NMDAR as well as PSD-95's coupling with NMDAR were also significantly altered in schizophrenia. Third, NRG1 stimulation attenuates NMDAR activation in the human prefrontal cortex as shown in rodents. NMDAR activation, measured by tyrosine phosphorylation of the receptors, was significantly attenuated in schizophrenia subjects, which we believe to be the first direct demonstration of NMDAR hypofunction in the brains of patients. Finally, when the brain tissues were co-stimulated with NMDA and NRG1, NRG1 induced NMDA attenuation was even greater in schizophrenia subjects, suggesting that the dyregulated NRG1 -erbB4 signaling in schizophrenia may contribute to NMDAR hypofunction. Our central hypothesis is that altered erbB4 signaling in schizophrenia is associated with altered protein -protein interactions in the PSD, including NMDAR complexes.
The aims of this proposal are designed to test a model in which altered erbB4 - postsynaptic density (PSD) protein association in schizophrenia leads to enhanced erbB4 signaling, which in turn results in NMDAR hypofunction. By doing so, we will be able to explore whether dysregulated protein - protein interactions in the PSD is a pathophysiologic mechanism for schizophrenia.
Aim 1 will first assess whether hyperactive erbB4 signaling is brain region- or ligand-specific in schizophrenia.
Aim 2 will specifically address protein protein interactions among erbB4 and other PSD proteins.
Aim 3, will further characterize the impact of erbB4 dysregulation on NMDAR signaling and explore possible mechanisms.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH075916-04
Application #
7656623
Study Section
Neural Basis of Psychopathology, Addictions and Sleep Disorders Study Section (NPAS)
Program Officer
Meinecke, Douglas L
Project Start
2006-09-28
Project End
2011-07-31
Budget Start
2009-08-01
Budget End
2011-07-31
Support Year
4
Fiscal Year
2009
Total Cost
$307,751
Indirect Cost
Name
University of Pennsylvania
Department
Psychiatry
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Khan, Atlas; Liu, Qian; Wang, Kai (2018) iMEGES: integrated mental-disorder GEnome score by deep neural network for prioritizing the susceptibility genes for mental disorders in personal genomes. BMC Bioinformatics 19:501
Amiri, Anahita; Coppola, Gianfilippo; Scuderi, Soraya et al. (2018) Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 362:
Giambartolomei, Claudia; Zhenli Liu, Jimmy; Zhang, Wen et al. (2018) A Bayesian framework for multiple trait colocalization from summary association statistics. Bioinformatics 34:2538-2545
Toker, Lilah; Mancarci, Burak Ogan; Tripathy, Shreejoy et al. (2018) Transcriptomic Evidence for Alterations in Astrocytes and Parvalbumin Interneurons in Subjects With Bipolar Disorder and Schizophrenia. Biol Psychiatry 84:787-796
Huckins, L M; Hatzikotoulas, K; Southam, L et al. (2018) Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa. Mol Psychiatry 23:1169-1180
Wang, Daifeng; Liu, Shuang; Warrell, Jonathan et al. (2018) Comprehensive functional genomic resource and integrative model for the human brain. Science 362:
Mitchell, A C; Javidfar, B; Pothula, V et al. (2018) MEF2C transcription factor is associated with the genetic and epigenetic risk architecture of schizophrenia and improves cognition in mice. Mol Psychiatry 23:123-132
Bryois, Julien; Garrett, Melanie E; Song, Lingyun et al. (2018) Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat Commun 9:3121
Fazio, Leonardo; Pergola, Giulio; Papalino, Marco et al. (2018) Transcriptomic context of DRD1 is associated with prefrontal activity and behavior during working memory. Proc Natl Acad Sci U S A 115:5582-5587
Gusev, Alexander; Mancuso, Nicholas; Won, Hyejung et al. (2018) Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet 50:538-548

Showing the most recent 10 out of 37 publications