HIV-dementia is the most common form of dementia in persons under 40 years of age. Therapeutic interventions designed to improve cognitive function or to prevent further cognitive decline in patients with HIV-dementia have focused on drugs that interact with receptors such as excitatory amino acid receptors and voltage operated calcium channels. Unfortunately, clinical trials with these agents have had limited success. In this proposal we look at a common pathway that is deregulated by HIV infection. We present the first evidence that begins to identify a mechanism whereby increased levels of ceramide and cholesterol in the brains and CSF of HIV infected patients with dementia can lead to neuronal dysfunction and death. We further identify and test potential neuroprotective therapeutics that stabilize sphingolipid metabolism. The long-term goals of this research are to discover and test therapeutic agents that protect neuronal function by stabilizing sphingolipid biochemistry. Sphingomyelin, ceramide, cholesterol and ganglosides are the primary constituents of specialized membrane domains called 'lipid rafts"""""""". These specialized regions of cellular membranes are thought be important to coordinate cellular signaling by localizing functional groups of proteins in the plasma membrane and by coupling transmembrane receptors with signal transduction machinery. Lipid rafts can be modified by ceramide to form larger domains, which serve to cluster receptor molecules. The generation of a high receptor density might be required for initiation of receptor-specific signaling and has been implicated as pivotal step in the formation of """"""""death domains"""""""". We have identified a ceramide-dependent mechanism that promotes the clustering of N-methyl-D- aspartate (NMDA) receptors into lipid rafts in response to the neurotoxic HIV-1 proteins gp120 and Tat. NMDA-evoked calcium bursts in these microdomains are sufficiently elevated to activate calcium dependent death effectors. Using biochemical, biophysical, molecular, electrophysiological and imaging techniques we propose to determine the mechanisms that direct the neurotoxic effects of the HIV-1 proteins gp120 and Tat by disrupting sphingolipid metabolism. These findings may lead to the rational design of pharmaceutical agents that are neuroprotective by mechanisms that stabilize sphingolipid metabolism and prevent the abnormal clustering of dysfunctional NMDA receptors.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
NeuroAIDS and other End-Organ Diseases Study Section (NAED)
Program Officer
Joseph, Jeymohan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Medicine
United States
Zip Code
Chaudhuri, Amrita Datta; Dastgheyb, Raha M; Yoo, Seung-Wan et al. (2018) TNF? and IL-1? modify the miRNA cargo of astrocyte shed extracellular vesicles to regulate neurotrophic signaling in neurons. Cell Death Dis 9:363
Ubaida-Mohien, Ceereena; Lamberty, Benjamin; Dickens, Alex M et al. (2017) Modifications in acute phase and complement systems predict shifts in cognitive status of HIV-infected patients. AIDS 31:1365-1378
Gannon, Patrick J; Akay-Espinoza, Cagla; Yee, Alan C et al. (2017) HIV Protease Inhibitors Alter Amyloid Precursor Protein Processing via ?-Site Amyloid Precursor Protein Cleaving Enzyme-1 Translational Up-Regulation. Am J Pathol 187:91-109
Yoo, S-W; Bae, M; Tovar-Y-Romo, L B et al. (2017) Hippocampal encoding of interoceptive context during fear conditioning. Transl Psychiatry 7:e991
Megra, Bezawit W; Eugenin, Eliseo A; Berman, Joan W (2017) The Role of Shed PrPc in the Neuropathogenesis of HIV Infection. J Immunol 199:224-232
Ubaida-Mohien, Ceereena; Lamberty, Benjamin; Dickens, Alex M et al. (2017) Informatic interrogation of CSF proteomic profiles from HIV-infected subjects implicates acute phase and complement systems in shifting cognitive status. AIDS :
Saylor, Deanna; Dickens, Alex M; Sacktor, Ned et al. (2016) HIV-associated neurocognitive disorder--pathogenesis and prospects for treatment. Nat Rev Neurol 12:234-48
Steiner, Joseph P; Bachani, Muznabanu; Wolfson-Stofko, Brett et al. (2016) Erratum to: Interaction of Paroxetine with Mitochondrial Proteins Mediates Neuroprotection. Neurotherapeutics 13:237
Sauerbeck, Andrew D; Laws, J Lukas; Bandaru, Veera V R et al. (2015) Spinal cord injury causes chronic liver pathology in rats. J Neurotrauma 32:159-69
Dickens, Alex M; Anthony, Daniel C; Deutsch, Reena et al. (2015) Cerebrospinal fluid metabolomics implicate bioenergetic adaptation as a neural mechanism regulating shifts in cognitive states of HIV-infected patients. AIDS 29:559-69

Showing the most recent 10 out of 35 publications