This proposal focuses on post-synaptic glutamate signaling, which mediates excitatory neurotransmission. Glutamate receptor signaling is organized by the membrane-associated guanylate kinase (MAGuK) family of scaffold proteins. Scaffolds determine the outcome of signal transduction by controlling the location of neurotransmitter receptors and connecting them to downstream effectors. In particular, two homologous MAGuKs (PSD-95 and PSD-93) play opposing roles in synaptic plasticity yet the basis for their differential activity remains a mystery. A key factor in synaptic plasticity is post-translation modification (PTM) of the MAGuK proteins, which have been missing in most studies that have been published to date. This proposal investigates the posttranslational regulation of PSD-95 and PSD-93.
Aim 1 will test the hypothesis that phosphorylation alters the structure and activity of MAGuKs. We propose that a difference in the number and location of PTM sites elicits activity differences.
Aim 2 will test the hypothesis that palmitoylation, a lipid modification essential for synaptic targeting, alters MAGuK activity and coverts them into the filament observed at synapses. Studies to date focused on soluble proteins but palmitoylation is indispensable for activity.
Aim 3 will test the hypothesis that phase transitions of MAGuKs regulate availability for receptor binding. SynGAP, an essential synaptic protein, induces to liquid phase separation of PSD-95. This can generate a dynamic ?membrane-less organelle?. We will investigate the functional effects of phase separation on receptor binding and structure. We possess the only working reconstitution of scaffold interactions in the post-synapse and provided the only kinetic description of MAGuK scaffolding activity. We will use our unique expertise to address how PTM changes the activity of MAGuKs. We have pioneered novel methods for structural refinement of proteins containing intrinsic disorder and generated the only structural model of a full-length scaffold protein to date. We will use these approaches to provide a mechanistic understanding of how MAGuK structure affects scaffolding. Our published work suggests that proteins residing together on PSD-95 have ?higher-order? interactions driven by the enforced proximity. Describing the molecular events in excitatory signaling is a fundamental challenge in neuroscience with direct relevance to brain development, memory and learning, and many neurological and neuropsychiatric disorders.

Public Health Relevance

The MAGuK scaffold proteins organize glutamate neurotransmission through multiprotein interactions and have been implicated in diseases such as neurodegeneration following stroke, autism, epilepsy and schizophrenia. This proposal investigates the post- translational regulation of MAGuKs by phosphorylation, palmitoylation and phase separation using a novel reconstitution of the postsynapse along with state-of-the-art single molecule methods. Understanding the allosteric regulation of MAGuKs through physiologically-relevant reconstitution may provide a new avenue for the treatment of neurological and neuropsychiatric disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH081923-13
Application #
9884794
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Driscoll, Jamie
Project Start
2008-01-10
Project End
2023-03-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
13
Fiscal Year
2020
Total Cost
Indirect Cost
Name
State University New York Stony Brook
Department
Physiology
Type
Schools of Medicine
DUNS #
804878247
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
Yanez Orozco, Inna S; Mindlin, Frank A; Ma, Junyan et al. (2018) Identifying weak interdomain interactions that stabilize the supertertiary structure of the N-terminal tandem PDZ domains of PSD-95. Nat Commun 9:3724
Hellenkamp, Björn; Schmid, Sonja; Doroshenko, Olga et al. (2018) Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study. Nat Methods 15:669-676
Amin, Johansen B; Salussolia, Catherine L; Chan, Kelvin et al. (2017) Divergent roles of a peripheral transmembrane segment in AMPA and NMDA receptors. J Gen Physiol 149:661-680
Pedersen, Søren W; Albertsen, Louise; Moran, Griffin E et al. (2017) Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions. ACS Chem Biol 12:2313-2323
McCann, James J; Choi, Ucheor B; Bowen, Mark E (2014) Reconstitution of multivalent PDZ domain binding to the scaffold protein PSD-95 reveals ternary-complex specificity of combinatorial inhibition. Structure 22:1458-66
Choi, Ucheor B; Kazi, Rashek; Stenzoski, Natalie et al. (2013) Modulating the intrinsic disorder in the cytoplasmic domain alters the biological activity of the N-methyl-D-aspartate-sensitive glutamate receptor. J Biol Chem 288:22506-15
Choi, Ucheor B; Weninger, Keith R; Bowen, Mark E (2012) Immobilization of proteins for single-molecule fluorescence resonance energy transfer measurements of conformation and dynamics. Methods Mol Biol 896:3-20
McCann, James J; Zheng, Liqiang; Rohrbeck, Daniel et al. (2012) Supertertiary structure of the synaptic MAGuK scaffold proteins is conserved. Proc Natl Acad Sci U S A 109:15775-80
Choi, Ucheor B; Xiao, Shifeng; Wollmuth, Lonnie P et al. (2011) Effect of Src kinase phosphorylation on disordered C-terminal domain of N-methyl-D-aspartic acid (NMDA) receptor subunit GluN2B protein. J Biol Chem 286:29904-12
Choi, Ucheor B; McCann, James J; Weninger, Keith R et al. (2011) Beyond the random coil: stochastic conformational switching in intrinsically disordered proteins. Structure 19:566-76

Showing the most recent 10 out of 15 publications