Major Depressive Disorder (MDD) is characterized by smaller hippocampus and fewer granule neurons (GNs). In contrast, MDD subjects treated with selective serotonin reuptake inhibitors (MDD*SSRI) have control levels of GNs and neuronal progenitor cells (NPCs) and normal dentate gyrus (DG) volume. We hypothesize a deficit of maturation and survival of DG cells in MDD, reversed by SSRI, possibly through action on intracellular cascades regulated by serotonin receptors (HTRs). The ventral DG regulates emotional processing, it has higher serotonergic projections than the dorsal DG in humans and mice. HTR1A mRNA density in anterior DG correlates in humans with mitotic and mature GN number and is necessary for SSRI action on neurogenesis in mice. We hypothesize: (1) NPCs, mitotic cells, immature neuroblasts, mature GNs and neuroblast dendrite arborization in human anterior DG correlate with HTR2A and HTR4 mRNA density; (2) GNs, neuroblasts and neuroblast dendrite arborization correlate with cells expressing molecules promoting proliferation (mTOR), cell maturation/dendritic development (CREB), cell survival (BCL2), DNA repair and synaptic plasticity (PARP), and inversely correlate with molecules preventing cell cycle progression, migration, and survival (PTEN) or promoting cell death via apoptosis or inflammation (Caspase3); (3) The effects of SSRIs on neurogenesis and behavior are altered in mice with ventral hippocampus-specific deletions of HTR1A, HTR4 and HTR2A; (4) The effects of HTRs on GN activity are sufficient to increase neurogenesis and produce antidepressant-like effects in mice. Our approach combines human and mouse studies to test mechanisms of HRTs action on intracellular molecules controlling maturation and survival. In matched untreated MDD, MDD*SSRI, and controls, we will determine HTR1A, HTR2A, and HTR4 mRNA (nCi /mg) density and will correlate that with number of NPCs, immature neuroblasts, mature GNs and neuroblast dendrite length in the DG. We will assess numbers of cells expressing markers promoting (mTOR, CREB, BCL2, PARP) or preventing (PARP, Caspase3) cell maturation and/or survival. We will correlate their expression with mature GN and neuroblast number, dendrite length and HTR mRNA densities in human and in a mice depression model. We generated mice lacking HTR1A or HTR4 in whole or just ventral DG, mice lacking HTR2A from hilar mossy cells and ventral CA3, as well as mice expressing inhibitory and excitatory Designer Receptors Exclusively Activated by Designer Drugs (DREADD) in GNs or mossy cells, which mimic HTR1A (inhibitory), HTR4 and HTR2A (excitatory). In wild type, HTR Kos and DREADD mice, we will quantify mitotic cells, NPCs, neuroblasts, GNs, neuroblast dendrite length, intracellular cascades studied in human, behavioral responses to chronic unpredictable stress and chronic treatment with fluoxetine. Results should inform the pathogenesis of depression and lead to new therapies that target relevant HTRs or downstream effectors.
Major Depressive Disorder (MDD), one of the leading causes of global disease burden, is characterized by deficits in the anterior dentate gyrus (DG) of the hippocampus including reduced volume, granule neuron (GN) number and serotonin receptor (HTR) mRNA density. Conversely, serotonin reuptake inhibitor (SSRI), enhance DG proliferation, maturation, and survival, but the mechanism of their action is unknown. We propose to elucidate this question with a unique approach combining human postmortem studies in well-characterized MDD, SSRI-treated MDD and controls, and studies in mice that are tissue-specific HTR knockouts or express engineered receptors, to test the hypothesis that SSRIs act, via HTRs, on intracellular cascades controlling hippocampal neuroplasticity, ultimately affecting behavioral responses to stress and antidepressant treatment.
Showing the most recent 10 out of 20 publications