Goal-directed perceptual decisions involve separable neurobiological mechanisms that sort incoming sensory information, accumulate goal-relevant data, compare accumulated data with a boundary, and commit to response upon reaching a decision. Disruption of any of these stages can impair the effectiveness of daily decisions, which may have serious consequences for health and well-being by affecting basic skills such as driving, social interaction, reading, and memory. While there have been significant advances in understanding the neural basis of these processes, the mechanisms by which sensory evidence is gathered, maintained, and evaluated are poorly understood. The proposed research will use functional magnetic resonance imaging (fMRI) to study the topography and temporal signature of neural systems involved in perceptual decision making and identify how they relate to choice outcome. Our previous research on object identification indicates that signals related to sensory processing, evidence gathering, and the commitment to a decision are temporally dissociable using fMRI.
The first aim of the proposed work is to establish a link between research using single unit physiology in non-human primates and research using functional imaging in humans, and to examine the relationship between sources of evidence and fMRI measures of evidence accumulation.
The second aim i s to test the hypothesis that the magnitude of fMRI activity in accumulator areas is related to choice criterion. Establishing this relationship will inform neurocognitive models of decision making and may identify effective compensatory strategies and appropriate target domains for remediation of faulty decision making.
The third aim will examine the relationship between neural signals and perceptual abilities in healthy aging. The proposed research will permit the development of a framework relating basic principles derived from neurophysiological research to measures of neural functioning in humans, and will inform theoretical models of perceptual decisions. The experiments will also serve as a basis for future research on more complex decisions, such as those involving reasoning, and for research aimed at early detection of disease states associated with faulty decision processing, such as Alzheimer's disease.

Public Health Relevance

The proposed research will study neural mechanisms of perceptual decision making and evidence gathering in human participants, and identify changes that occur in healthy aging. Understanding basic principles of signal processing in perceptual decision making is necessary for early detection of faulty decision processes that can occur in normal aging and Alzheimer's disease. It is also important for the development of appropriately targeted remediation strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
1R01MH086492-01A2
Application #
7984305
Study Section
Cognition and Perception Study Section (CP)
Program Officer
Rossi, Andrew
Project Start
2010-05-14
Project End
2014-03-31
Budget Start
2010-05-14
Budget End
2011-03-31
Support Year
1
Fiscal Year
2010
Total Cost
$335,001
Indirect Cost
Name
University of Pittsburgh
Department
Type
Organized Research Units
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Wilckens, Kristine A; Erickson, Kirk I; Wheeler, Mark E (2018) Physical Activity and Cognition: A Mediating Role of Efficient Sleep. Behav Sleep Med 16:569-586
Dunovan, Kyle; Wheeler, Mark E (2018) Computational and neural signatures of pre and post-sensory expectation bias in inferior temporal cortex. Sci Rep 8:13256
Gratton, C; Neta, M; Sun, H et al. (2017) Distinct Stages of Moment-to-Moment Processing in the Cinguloopercular and Frontoparietal Networks. Cereb Cortex 27:2403-2417
Tremel, Joshua J; Wheeler, Mark E (2015) Content-specific evidence accumulation in inferior temporal cortex during perceptual decision-making. Neuroimage 109:35-49
Wheeler, Mark E; Woo, Sarah G; Ansel, Tobin et al. (2015) The strength of gradually accruing probabilistic evidence modulates brain activity during a categorical decision. J Cogn Neurosci 27:705-19
Wilckens, Kristine A; Woo, Sarah G; Kirk, Afton R et al. (2014) Role of sleep continuity and total sleep time in executive function across the adult lifespan. Psychol Aging 29:658-65
Dunovan, Kyle E; Tremel, Joshua J; Wheeler, Mark E (2014) Prior probability and feature predictability interactively bias perceptual decisions. Neuropsychologia 61:210-21
Wilckens, Kristine A; Woo, Sarah G; Erickson, Kirk I et al. (2014) Sleep continuity and total sleep time are associated with task-switching and preparation in young and older adults. J Sleep Res 23:508-16
Irwin, David J; McMillan, Corey T; Brettschneider, Johannes et al. (2013) Cognitive decline and reduced survival in C9orf72 expansion frontotemporal degeneration and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 84:163-9
Criss, Amy H; Wheeler, Mark E; McClelland, James L (2013) A differentiation account of recognition memory: evidence from fMRI. J Cogn Neurosci 25:421-35

Showing the most recent 10 out of 13 publications