Depression is a common disease that causes significant morbidity and mortality in humans. There is currently no clarity regarding the underlying molecular, cellular or circuit mechanisms. Presently, therapeutic intervention is not well understood mechanistically and often unsuccessful. It is important to derive a mechanistic understand of depressive disorders so that effective treatment can be developed. Abnormalities in parts of the brain that participate in the reward system are thought to play important roles. The lateral habenula (LHb) is an important part of the reward circuit by providing `reward prediction error' signals: when an animal receives a reward that is less than expected (i.e. is disappointed) or anticipates punishment (i.e. expects something bad), the LHb is active, and this information is thought normally to be used to shape future behavior to maximize reward and avoid unpleasant events. An individual with overly active LHb would be expected to be easily or continually disappointed and generally expect bad outcomes. It is therefore not a surprise that a number of studies in humans and rodents indicate that excessive activity in the LHb contributes to major depression. This grant proposes to examine how information in the LHb is processed in normal rodents, and modified by manipulations related to depression.

Public Health Relevance

Neurons in the lateral habenula provide `disappointment' signals in the brain. We have found overactive excitation by synapses onto these neurons in rodent models of depression. Thus, reducing activity of these synapses may alleviate some forms of major depressive disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH091119-07
Application #
9206188
Study Section
Special Emphasis Panel (ZRG1-MDCN-P (57)R)
Program Officer
Nadler, Laurie S
Project Start
2010-07-01
Project End
2021-02-28
Budget Start
2017-03-01
Budget End
2018-02-28
Support Year
7
Fiscal Year
2017
Total Cost
$348,750
Indirect Cost
$123,750
Name
University of California San Diego
Department
Neurosciences
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Proulx, Christophe D; Aronson, Sage; Milivojevic, Djordje et al. (2018) A neural pathway controlling motivation to exert effort. Proc Natl Acad Sci U S A 115:5792-5797
Park, Hoyong; Rhee, Jeehae; Park, Kwanghoon et al. (2017) Exposure to Stressors Facilitates Long-Term Synaptic Potentiation in the Lateral Habenula. J Neurosci 37:6021-6030
Malinow, Roberto (2016) Depression: Ketamine steps out of the darkness. Nature 533:477-8
Landgraf, Dominic; Long, Jaimie E; Proulx, Christophe D et al. (2016) Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice. Biol Psychiatry 80:827-835
Shabel, Steven J; Murphy, Ryan T; Malinow, Roberto (2014) Negative learning bias is associated with risk aversion in a genetic animal model of depression. Front Hum Neurosci 8:1
Shabel, Steven J; Proulx, Christophe D; Piriz, Joaquin et al. (2014) Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 345:1494-8
Proulx, Christophe D; Hikosaka, Okihide; Malinow, Roberto (2014) Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci 17:1146-52
Alfonso, Stephanie; Kessels, Helmut W; Banos, Charles C et al. (2014) Synapto-depressive effects of amyloid beta require PICK1. Eur J Neurosci 39:1225-33
Nabavi, Sadegh; Fox, Rocky; Proulx, Christophe D et al. (2014) Engineering a memory with LTD and LTP. Nature 511:348-52
Viger, Mathieu L; Sheng, Wangzhong; Doré, Kim et al. (2014) Near-infrared-induced heating of confined water in polymeric particles for efficient payload release. ACS Nano 8:4815-26

Showing the most recent 10 out of 23 publications