Schizophrenia is a common and debilitating condition with high personal costs to affected individuals and their families as well as high societal costs. Relatively little is known about the pathophysiology of schizophrenia. Although there is strong evidence for a genetic component to risk of schizophrenia, few specific genes involved in its etiology have been identified. In this set of coordinated R01s, we propose to take an alternative approach to localizing genes influencing risk of schizophrenia, combining established intermediate risk factors for schizophrenia with identification of novel transcriptional endophenotypes and combining standard GWAS gene localization approaches with innovative methods utilizing joint analysis of association and linkage and joint analysis of genomic and transcriptomic evidence. We will utilize existing samples and data from three ongoing studies: the Consortium on the Genetics of Schizophrenia (COGS);the Multiplex Multigenerational Investigation of Schizophrenia (MGI);and the Project among African Americans to Explore Risks for Schizophrenia (PAARTNERS). These three family studies were designed to investigate genetic influences on schizophrenia using neurocognitive phenotypes associated with schizophrenia risk. We hypothesize that alterations in gene regulation are responsible for some portion of the genetic liability to schizophrenia. Thus, we will use RNA expression levels both as potential endophenotypes for schizophrenia and as an alternative method of genome scanning. Identification of transcriptional correlates of schizophrenia will be facilitated by use of a novel Endophenotype Ranking Value (ERV) that combines the strength of the genetic signal on a potential endophenotype with the strength of its correlation with the disease of interest (i.e. schizophrenia) in a single measure. We will conduct a conventional genome-wide association study (GWAS) for schizophrenia, for newly identified transcriptional endophenotypes, and for classical neurocognitive risk factors. We will also take advantage of the large families in these samples to conduct joint linkage and association. Finally we will combine genomic and transcriptomic lines of evidence in a joint test to identify genes influencing schizophrenia and associated neurocognitive risk factors. All data generated in the course of the project will be shared through dbGaP and the NIMH Genetics Repository.

Public Health Relevance

The goal of this project is to identify genes influencing risk of schizophrenia utilizing information from intermediate traits, including levels of gene expression and measures of cognitive function, in families from three genetic consortia. Integration of information from the proposed association and gene expression studies, along with information from ongoing studies of DNA methylation and structural variants in these same families, will contribute to our understanding of the basic biological processes underlying schizophrenia, has the potential to aid in diagnosis and prevention, and may suggest new avenues of treatment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
1R01MH093533-01A1
Application #
8235324
Study Section
Special Emphasis Panel (ZRG1-PSE-H (60))
Program Officer
Senthil, Geetha
Project Start
2012-04-15
Project End
2015-03-31
Budget Start
2012-04-15
Budget End
2013-03-31
Support Year
1
Fiscal Year
2012
Total Cost
$77,438
Indirect Cost
$27,438
Name
University of California San Diego
Department
Psychiatry
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Braff, David L (2015) The importance of endophenotypes in schizophrenia research. Schizophr Res 163:1-8
Braff, David L (2014) Genomic substrates of neurophysiological endophenotypes: where we've been and where we're going. Psychophysiology 51:1323-4
Braff, Lara; Braff, David L (2013) The neuropsychiatric translational revolution: still very early and still very challenging. JAMA Psychiatry 70:777-9
Gulsuner, Suleyman; Walsh, Tom; Watts, Amanda C et al. (2013) Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154:518-29
Braff, David L; Ryan, James; Rissling, Anthony J et al. (2013) Lack of use in the literature from the last 20 years supports dropping traditional schizophrenia subtypes from DSM-5 and ICD-11. Schizophr Bull 39:751-3