Long-term memory (LTM) storage requires remodeling of pre-existing synapses and formation of new ones. While the roles of transcription and synaptic protein synthesis in these processes are well described, it remains largely unknown how nuclear and synaptic processes are coordinated during LTM storage. We have previously shown that kinesin, the molecular motor that mediates communication between nucleus and synapses through the microtubule-dependent transport of gene products, has a key role in this process. We have discovered that kinesins are necessary and sufficient to induce long-term facilitation (LTF) in marine snail Aplysia and that kinesin transport several protein and mRNA cargos that are relevant for learning. Our guiding hypothesis is that storage of LTM requires regulation of axonal transport of gene products in pre- and post-synaptic neurons of circuits involved in learning. In this proposal, we test our central hypothesis that kinesin mediated transport is differentially regulated in bidirectional plasticity during learning. We will perform our studies using the well-described pre-synaptic sensory and post-synaptic motor neurons of gill withdrawal reflex of Aplysia. The sensory and motor neuron synapses can be re-constituted in vitro and provide experimental flexibility to specifically manipulate these neurons to study regulation of transport in pre- and post-synaptic neurons. Specifically, we aim to understand how the three critical components of anterograde transport: the kinesin motor, cargo and microtubule tracks may be regulated to adjust delivery of cargo to synapses during LTM. An anticipated outcome of this proposed research is that once the molecular regulators of axonal transport are identified, they may be manipulated pharmacologically, producing new and innovative approaches to the treatment of disorders such as tauopathies in which axonal transport is affected.

Public Health Relevance

Presently, there is no cure for dementias such as Alzheimer's disease. Proteins involved in axonal transport are affected in Alzheimer's disease and in number of other neuropsychiatric disorders. This proposal outlines experiments designed to understand how axonal transport is regulated in pre- and post-synaptic neurons involved in learning and memory storage. Once the molecular regulators of axonal transport are identified, they may be manipulated pharmacologically, producing new and innovative approaches to the treatment of these disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH094607-05
Application #
9385005
Study Section
Neurobiology of Learning and Memory Study Section (LAM)
Program Officer
Driscoll, Jamie
Project Start
2014-01-09
Project End
2019-11-30
Budget Start
2017-12-01
Budget End
2019-11-30
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Scripps Florida
Department
Type
DUNS #
148230662
City
Jupiter
State
FL
Country
United States
Zip Code
33458
Swarnkar, Supriya; Avchalumov, Yosef; Raveendra, Bindu L et al. (2018) Kinesin Family of Proteins Kif11 and Kif21B Act as Inhibitory Constraints of Excitatory Synaptic Transmission Through Distinct Mechanisms. Sci Rep 8:17419
Athamneh, Ahmad I M; He, Yingpei; Lamoureux, Phillip et al. (2017) Neurite elongation is highly correlated with bulk forward translocation of microtubules. Sci Rep 7:7292
Halievski, Katherine; Kemp, Michael Q; Breedlove, S Marc et al. (2016) Non-Cell-Autonomous Regulation of Retrograde Motoneuronal Axonal Transport in an SBMA Mouse Model. eNeuro 3:
Kadakkuzha, Beena M; Liu, Xin-An; McCrate, Jennifer et al. (2015) Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations. Front Cell Neurosci 9:63
Miller, Kyle E; Liu, Xin-An; Puthanveettil, Sathyanarayanan V (2015) Automated measurement of fast mitochondrial transport in neurons. Front Cell Neurosci 9:435
Baqri, Rehan M; Pietron, Arielle V; Gokhale, Rewatee H et al. (2014) Mitochondrial chaperone TRAP1 activates the mitochondrial UPR and extends healthspan in Drosophila. Mech Ageing Dev 141-142:35-45