Dendritic spines host >90 percent of excitatory synapses;they are lost or have abnormal structure in many developmental disorders that disrupt central nervous system function. The overall goal is to understand the role of spine and synapse structure in the normal development of learning and memory. Long-term potentiation (LTP) is a synaptic model of learning and memory well-suited to investigate this process. Spines are thought to be important because they sequester core structures and molecules needed for the protein synthesis-dependent or """"""""late"""""""" phase of LTP (L-LTP) lasting >3hr. A clear understanding requires the nanometer resolution of 3D reconstruction from serial section electron microscopy, an approach pioneered in this laboratory. Rigorous experiments are proposed to test whether formation of dendritic spines and structural synaptic plasticity provide general mechanisms for the developmental regulation of L-LTP in hippocampus, a brain region crucial for learning and memory.
Aim 1 is to test the hypothesis that the abrupt onset of L-LTP at postnatal day (P)12 is associated with first occurrence of dendritic spines and capacity for structural synaptic plasticity. The experiments will determine what differentiates dendritic, axonal, spine, and synaptic structure and composition at P12, from P8 and P10 when L-LTP is not produced by one bout of TBS. They will test whether production of L-LTP at P12 results in a balanced elimination of small spines and enlargement of remaining synapses as occurs in mature hippocampus and whether pre- and postsynaptic structural remodeling are synchronized during development with the ability to express L-LTP.
Aim 2 is to test the hypothesis that dendritic spines are induced by TBS and then serve to sustain L-LTP after a second bout of TBS at P10, but not at P8, when multiple TBS do not produce L-LTP.
Aim 3 is to ascertain the developmental onset of L-LTP and its ultrastructural correlates in mouse hippocampus as a foundation for future work using genetic manipulations. The outcomes promise new insight into the synaptic basis of learning and memory, essential knowledge to design effective treatments for developmental brain disorders.

Public Health Relevance

Synapses are structurally disrupted in individuals with developmental brain disorders. Normal development must be characterized to draw conclusions about functional consequences of such disruption. Here the nanometer resolution of electron microscopy, and long-term potentiation, a synaptic mechanism of learning and memory, are combined to investigate the normal development of synapse structure and function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
1R01MH095980-01A1
Application #
8373632
Study Section
Neurodifferentiation, Plasticity, and Regeneration Study Section (NDPR)
Program Officer
Panchision, David M
Project Start
2012-07-09
Project End
2017-06-30
Budget Start
2012-07-09
Budget End
2013-06-30
Support Year
1
Fiscal Year
2012
Total Cost
$374,740
Indirect Cost
$124,740
Name
University of Texas Austin
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
170230239
City
Austin
State
TX
Country
United States
Zip Code
78712
Ostroff, Linnaea E; Watson, Deborah J; Cao, Guan et al. (2018) Shifting patterns of polyribosome accumulation at synapses over the course of hippocampal long-term potentiation. Hippocampus 28:416-430
Bromer, Cailey; Bartol, Thomas M; Bowden, Jared B et al. (2018) Long-term potentiation expands information content of hippocampal dentate gyrus synapses. Proc Natl Acad Sci U S A 115:E2410-E2418
Smith, Heather L; Bourne, Jennifer N; Cao, Guan et al. (2016) Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP. Elife 5:
Watson, Deborah J; Ostroff, Linnaea; Cao, Guan et al. (2016) LTP enhances synaptogenesis in the developing hippocampus. Hippocampus 26:560-76
Harris, Kristen M; Spacek, Josef; Bell, Maria Elizabeth et al. (2015) A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development. Sci Data 2:150046
Bartol, Thomas M; Bromer, Cailey; Kinney, Justin et al. (2015) Nanoconnectomic upper bound on the variability of synaptic plasticity. Elife 4:e10778
Bartol, Thomas M; Keller, Daniel X; Kinney, Justin P et al. (2015) Computational reconstitution of spine calcium transients from individual proteins. Front Synaptic Neurosci 7:17
Bailey, Craig H; Kandel, Eric R; Harris, Kristen M (2015) Structural Components of Synaptic Plasticity and Memory Consolidation. Cold Spring Harb Perspect Biol 7:a021758
Cao, Guan; Harris, Kristen M (2014) Augmenting saturated LTP by broadly spaced episodes of theta-burst stimulation in hippocampal area CA1 of adult rats and mice. J Neurophysiol 112:1916-24
Bell, Maria Elizabeth; Bourne, Jennifer N; Chirillo, Michael A et al. (2014) Dynamics of nascent and active zone ultrastructure as synapses enlarge during long-term potentiation in mature hippocampus. J Comp Neurol 522:3861-84

Showing the most recent 10 out of 19 publications