The immediate early gene early growth response 3 (EGR3) is associated with schizophrenia and expressed at reduced levels in postmortem patients'brains. We have previously reported that Egr3-deficient (-/-) mice display numerous schizophrenia-like behavioral abnormalities. Moreover, their reduced sensitivity to the sedating effects of clozapine, compared with wildtype (WT) littermates, parallels the unexplained clinical observation that schizophrenia patients display a markedly heightened tolerance to antipsychotic side effects compared to healthy controls. Our preliminary studies reveal that a nearly 70% loss serotonin 2A receptor (5HT2AR) binding in the prefrontal cortex (PFC) of Egr3-/- mice appears to be the mechanism underlying this effect. Since schizophrenia patients also show a decreased expression of cortical 5HT2ARs, this suggests that regulation of 5HT2ARs may be a mechanism through which Egr3 influences schizophrenia risk. The goal of the current proposal is to fully characterize the anatomic localization and molecular mechanism of 5HT2AR regulation by Egr3, and to establish which of the Egr3-/- schizophrenia-like behavioral abnormalities are mediated by 5HT2AR deficiency.
In Aim 1 we will use immunohistochemistry and in situ hybridization to anatomically define 5HT2AR expression in Egr3-/- mice.
In Aim 2 we will use quantitative RT-PCR to determine the ability of environmental stress to modulate the regulation of Htr2a by Egr3. We will conduct chromatin immunoprecipitation and luciferase reporter assays to test the hypothesis that Egr3 regulates Htr2a expression through promoter binding.
Aim 3 proposes to use virus-mediated overexpression of 5HT2AR to """"""""rescue"""""""" the schizophrenia-like phenotypes of Egr3-/- mice, testing the hypothesis that the 5HT2AR-deficiency mediates these abnormalities. Identification of mechanisms by which Egr3 regulates another schizophrenia susceptibility gene will enhance our understanding of how numerous candidate genes may act in a biological pathway to influence risk for schizophrenia. Verification of such a pathway should elucidate targets for development of novel treatments for this devastating disorder.

Public Health Relevance

The proposed studies are designed to reveal how two different proteins involved in schizophrenia susceptibility and treatment may interact to mediate the effect of environment on risk for this severe mental illness. This research has the potential t elucidate a cause of schizophrenia and to reveal early environmental interventions that could reduce the chances of developing schizophrenia, a debilitating psychiatric illness that afflicts 1% of the population worldwide.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH097803-02
Application #
8517206
Study Section
Molecular Neuropharmacology and Signaling Study Section (MNPS)
Program Officer
Nadler, Laurie S
Project Start
2012-08-01
Project End
2017-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
2
Fiscal Year
2013
Total Cost
$366,594
Indirect Cost
$115,031
Name
University of Arizona
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Pfaffenseller, Bianca; Kapczinski, Flavio; Gallitano, Amelia L et al. (2018) EGR3 Immediate Early Gene and the Brain-Derived Neurotrophic Factor in Bipolar Disorder. Front Behav Neurosci 12:15
Marballi, Ketan K; Gallitano, Amelia L (2018) Immediate Early Genes Anchor a Biological Pathway of Proteins Required for Memory Formation, Long-Term Depression and Risk for Schizophrenia. Front Behav Neurosci 12:23
Meyers, Kimberly T; Marballi, Ketan K; Brunwasser, Samuel J et al. (2018) The Immediate Early Gene Egr3 Is Required for Hippocampal Induction of Bdnf by Electroconvulsive Stimulation. Front Behav Neurosci 12:92
Maple, Amanda; Lackie, Rachel E; Elizalde, Diana I et al. (2017) Attenuated Late-Phase Arc Transcription in the Dentate Gyrus of Mice Lacking Egr3. Neural Plast 2017:6063048
Hastings, K Taraszka; Elizalde, Diana; Muppana, Leela et al. (2017) Nab2 maintains thymus cellularity with aging and stress. Mol Immunol 85:185-195
Gallitano, Amelia L; Satvat, Elham; Gil, Mario et al. (2016) Distinct dendritic morphology across the blades of the rodent dentate gyrus. Synapse 70:277-282
Grønli, Janne; Clegern, William C; Schmidt, Michelle A et al. (2016) Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits. Sleep 39:2189-2199
Nie, Fayi; Wang, Xiaoli; Zhao, Panpan et al. (2015) Genetic analysis of SNPs in CACNA1C and ANK3 gene with schizophrenia: A comprehensive meta-analysis. Am J Med Genet B Neuropsychiatr Genet 168:637-48
Huentelman, Matthew J; Muppana, Leela; Corneveaux, Jason J et al. (2015) Association of SNPs in EGR3 and ARC with Schizophrenia Supports a Biological Pathway for Schizophrenia Risk. PLoS One 10:e0135076
Maple, Amanda M; Zhao, Xiuli; Elizalde, Diana I et al. (2015) Htr2a Expression Responds Rapidly to Environmental Stimuli in an Egr3-Dependent Manner. ACS Chem Neurosci 6:1137-42

Showing the most recent 10 out of 11 publications