Astrocytes are now recognized as active components of mature synapses; they structurally ensheath synapses and modulate neurotransmission in the central nervous system (CNS). Astrocyte dysfunction has been implicated in various neurological disorders and has been shown to actively modulate disease progression. Although astrocytes undergo a developmental maturation process in which subtypes form unique and elaborate morphologies and express overlapping but distinct molecular signatures, it is unknown how astrocyte heterogeneity arises during development of the CNS and how astrocyte development is regulated, in part because of a lack of appropriate tools for such studies. We propose to use integrated molecular and genetic approaches in Drosophila and mouse to define factors that distinguish astrocyte subtypes and regulate their developmental maturation. In particular, this project will focus on these aims: 1) Molecularly define astrocyte subtypes within the cortex and in different CNS regions using FACS and TRAP approaches; 2) Perform dEAAT1-based genetic screens to identify regulators of astrocyte development; 3) Develop new cre recombinase mice for studying astrocyte heterogeneity and function in vivo. We have generated a large amount of preliminary data demonstrating feasibility for the three aims summarized above. By characterizing molecular signatures of astrocyte subtypes in the CNS and identifying regulators of astrocyte development, this project will provide markers for astrocyte subtypes in the cortex and novel insights about how astrocyte maturation occurs. The development of a new cre recombinase driver mouse line will facilitate the selective deletion/activation of genes in astrocytes of the cortex, a region for which an existing astrocyte cre driver line is not very effective. Knowledge of astrocyte heterogeneity and new tools for studying it are critical for understanding how astrocytes become dysfunctional and how distinct classes of astrocytes contribute to the pathogenesis of psychiatric disorders.

Public Health Relevance

This project aims to define molecules that distinguish astrocyte subtypes and regulate astrocyte developmental maturation. It will also generate new mouse strains that will permit efficient and selective gene manipulation in different populations of astrocytes. The new knowledge and tools arising from this research will be valuable for further studies of astrocyte heterogeneity and how dysfunction of this cell type contributes to psychiatric disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH099554-03
Application #
8773614
Study Section
Special Emphasis Panel (ZMH1)
Program Officer
Panchision, David M
Project Start
2012-12-20
Project End
2015-11-30
Budget Start
2014-12-01
Budget End
2015-11-30
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Tufts University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
039318308
City
Boston
State
MA
Country
United States
Zip Code
You, Samantha; Fulga, Tudor A; Van Vactor, David et al. (2018) Regulation of Circadian Behavior by Astroglial MicroRNAs in Drosophila. Genetics 208:1195-1207
Yang, Yongjie; Jackson, Rob (2018) Astrocyte identity: evolutionary perspectives on astrocyte functions and heterogeneity. Curr Opin Neurobiol 56:40-46
Morel, Lydie; Chiang, Ming Sum R; Higashimori, Haruki et al. (2017) Molecular and Functional Properties of Regional Astrocytes in the Adult Brain. J Neurosci 37:8706-8717
Clasadonte, Jerome; Morel, Lydie; Barrios-Camacho, Camila M et al. (2016) Molecular analysis of acute and chronic reactive astrocytes in the pilocarpine model of temporal lobe epilepsy. Neurobiol Dis 91:315-25
Higashimori, Haruki; Schin, Christina S; Chiang, Ming Sum R et al. (2016) Selective Deletion of Astroglial FMRP Dysregulates Glutamate Transporter GLT1 and Contributes to Fragile X Syndrome Phenotypes In Vivo. J Neurosci 36:7079-94
Ng, Fanny S; Sengupta, Sukanya; Huang, Yanmei et al. (2016) TRAP-seq Profiling and RNAi-Based Genetic Screens Identify Conserved Glial Genes Required for Adult Drosophila Behavior. Front Mol Neurosci 9:146
Huang, Yanmei; Ng, Fanny S; Jackson, F Rob (2015) Comparison of larval and adult Drosophila astrocytes reveals stage-specific gene expression profiles. G3 (Bethesda) 5:551-8
Ng, Fanny S; Jackson, F Rob (2015) The ROP vesicle release factor is required in adult Drosophila glia for normal circadian behavior. Front Cell Neurosci 9:256
Jackson, F Rob; Ng, Fanny S; Sengupta, Sukanya et al. (2015) Glial cell regulation of rhythmic behavior. Methods Enzymol 552:45-73
Andresen, Lauren; Hampton, David; Taylor-Weiner, Amaro et al. (2014) Gabapentin attenuates hyperexcitability in the freeze-lesion model of developmental cortical malformation. Neurobiol Dis 71:305-16

Showing the most recent 10 out of 15 publications