The clinical, social and financial burden of Autism Spectrum Disorders (ASD) is staggering. They are the most prevalent of the developmental disorders and their incidence is rising. However, the ASD phenotype variability is large, and ASD symptoms can manifest over a range of ages and to different degrees. In part for these reasons, the ASD clinical diagnosis is challenging and often is not made until 3-5 years of age. Thus, there remains an unmet need for a valid and reliable endophenotype which would facilitate ASD diagnosis early in life, enable efficient study of ASD risk factors, and eventually serve as a useful biomarker to inform the development of effective therapies and assess treatment response in future clinical trials. The overarching goal of this proposal is to explore te utility of transcranial magnetic stimulation (TMS) measures of brain plasticity as a novel neurophysiologic endophenotype in high- and low-functioning adults and children with ASD. Our work to date demonstrates the potential utility of these measures in higher-functioning adults with ASD, and pilot data support the feasibility and safety of applying the same measures to children and lower functioning individuals in whom the value of such an endophenotype would be particularly high. We thus propose to apply single-pulse TMS to evaluate the modulation in corticospinal reactivity induced by a specific repetitive TMS protocol known as theta burst stimulation (TBS). The comparison of the motor responses induced by single-pulse TMS before and following TBS is a unique noninvasive measure of brain plasticity in humans, and we have found that it shows a reliable abnormality in high-functioning adult individuals with ASD. Our hypothesis is that the alteration of TBS-induced modulation of TMS responses is a common neuropathophysiologic trait that is reliably linked to the ASD phenotype, and that will not be limited to high functioning adults but be also valid in children and low-functioning individuals. W thus anticipate that data from the proposed studies will address an important need for a rapid, noninvasive, reliable and safe endophenotype available to patients with ASD across ages and level of function.

Public Health Relevance

The diagnosis of ASD can be difficult, is based on the manifestation of certain behaviors that show remarkable variability across affected individuals, and is frequently made relatively late in childhood. We aim to establish a neurophysiologic biomarker that will aid in ASD diagnosis, inform the development of effective therapies, and predict treatment response in future clinical trials. We propose to test the hypothesis that measures of brain plasticity obtained with transcranial magnetic stimulation will serve this purpose and be reliable and valid across the lifespan and across various functioning levels.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH100186-02
Application #
8913270
Study Section
Child Psychopathology and Developmental Disabilities Study Section (CPDD)
Program Officer
Gilotty, Lisa
Project Start
2014-08-15
Project End
2019-04-30
Budget Start
2015-06-01
Budget End
2016-04-30
Support Year
2
Fiscal Year
2015
Total Cost
$437,188
Indirect Cost
$120,237
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02215
Corp, Daniel T; Youssef, George J; Clark, Ross A et al. (2018) Reduced motor cortex inhibition and a 'cognitive-first' prioritisation strategy for older adults during dual-tasking. Exp Gerontol 113:95-105
Davila-Pérez, Paula; Jannati, Ali; Fried, Peter J et al. (2018) The Effects of Waveform and Current Direction on the Efficacy and Test-Retest Reliability of Transcranial Magnetic Stimulation. Neuroscience 393:97-109
O'Gara, Brian; Marcantonio, Edward R; Pascual-Leone, Alvaro et al. (2018) Prevention of Early Postoperative Decline (PEaPoD): protocol for a randomized, controlled feasibility trial. Trials 19:676
Abellaneda-Pérez, Kilian; Vaqué-Alcázar, Lídia; Vidal-Piñeiro, Dídac et al. (2018) Age-related differences in default-mode network connectivity in response to intermittent theta-burst stimulation and its relationships with maintained cognition and brain integrity in healthy aging. Neuroimage :
Cole, Eleanor J; Enticott, Peter G; Oberman, Lindsay M et al. (2018) The Potential of Repetitive Transcranial Magnetic Stimulation for Autism Spectrum Disorder: A Consensus Statement. Biol Psychiatry :
Baumer, Nicole; Spence, Sarah J (2018) Evaluation and Management of the Child With Autism Spectrum Disorder. Continuum (Minneap Minn) 24:248-275
Boes, Aaron D; Uitermarkt, Brandt D; Albazron, Fatimah M et al. (2018) Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain Stimul 11:575-581
Manor, Brad; Yu, Wanting; Zhu, Hao et al. (2018) Smartphone App-Based Assessment of Gait During Normal and Dual-Task Walking: Demonstration of Validity and Reliability. JMIR Mhealth Uhealth 6:e36
Vannini, Patrizia; Hanseeuw, Bernard; Munro, Catherine E et al. (2017) Anosognosia for memory deficits in mild cognitive impairment: Insight into the neural mechanism using functional and molecular imaging. Neuroimage Clin 15:408-414
Fried, Peter J; Jannati, Ali; Davila-Pérez, Paula et al. (2017) Reproducibility of Single-Pulse, Paired-Pulse, and Intermittent Theta-Burst TMS Measures in Healthy Aging, Type-2 Diabetes, and Alzheimer's Disease. Front Aging Neurosci 9:263

Showing the most recent 10 out of 25 publications