A handful of mutation processes operate on the human germline to form small insertions and deletions (indels), large copy number variants (CNVs), inversions, translocations and more complex changes in chromosome structure. These diverse mutations are collectively referred to as structural variation (SV). Assessing the functional and pathogenic impact of singleton and rare structural variants in disease is one of the most pressing and understudied problems in human genetics today. Here we describe methodological innovations for integrating structural variation into eQTL studies, and then transforming knowledge learned from GTEx data into a probabilistic pathogenicity assessment tool that can be used by a wide range of researchers. We will pilot new approaches for integrating SVs and single nucleotide variants (SNVs) in a coherent framework. The centerpiece of this integrative effort will be a new model- based pathogenicity assessment method that will integrate (i) knowledge gleaned from GTEx analyses, (ii) recent breakthroughs in classification of Mendelian disease genes, and (iii) the rapidly expanding set of known disease mutations matriculating from array- and sequencing-based studies of severe Mendelian and other pediatric diseases. This method will be the first tool for generic functional assessment of both SVs and SNVs and will interpret variation affecting coding and/or non-coding regions.

Public Health Relevance

It is estimated that approximately 15% of cases of idiopathic intellectual disability and congenital defects are caused by chromosomal rearrangements. This number is certainly an underestimate, as no tools exist to evaluate the functional impact of most chromosomal rearrangements. In this project we will develop novel model-based methods for improved interpretation of this class of mutation, driven in part by the new availability of extensive gene expression data from multiple human tissues.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
1R01MH101810-01
Application #
8586215
Study Section
Special Emphasis Panel (ZRG1-GGG-H (50))
Program Officer
Addington, Anjene M
Project Start
2013-08-01
Project End
2016-06-30
Budget Start
2013-08-01
Budget End
2014-06-30
Support Year
1
Fiscal Year
2013
Total Cost
$380,000
Indirect Cost
$130,000
Name
Washington University
Department
Genetics
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Zhang, Mingfeng; Lykke-Andersen, Soren; Zhu, Bin et al. (2018) Characterising cis-regulatory variation in the transcriptome of histologically normal and tumour-derived pancreatic tissues. Gut 67:521-533
Kasak, Laura; Punab, Margus; Nagirnaja, Liina et al. (2018) Bi-allelic Recessive Loss-of-Function Variants in FANCM Cause Non-obstructive Azoospermia. Am J Hum Genet 103:200-212
Agrawal, A; Chou, Y-L; Carey, C E et al. (2018) Genome-wide association study identifies a novel locus for cannabis dependence. Mol Psychiatry 23:1293-1302
Peckham-Gregory, Erin C; Chakraborty, Rikhia; Scheurer, Michael E et al. (2017) A genome-wide association study of LCH identifies a variant in SMAD6 associated with susceptibility. Blood 130:2229-2232
Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D H et al. (2017) Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res 27:1843-1858
Mercader, Josep M; Liao, Rachel G; Bell, Avery D et al. (2017) A Loss-of-Function Splice Acceptor Variant in IGF2 Is Protective for Type 2 Diabetes. Diabetes 66:2903-2914
Bai, Xue; Mangum, Kevin D; Dee, Rachel A et al. (2017) Blood pressure-associated polymorphism controls ARHGAP42 expression via serum response factor DNA binding. J Clin Invest 127:670-680
Yang, Bo; Zhou, Wei; Jiao, Jiao et al. (2017) Protein-altering and regulatory genetic variants near GATA4 implicated in bicuspid aortic valve. Nat Commun 8:15481
Manning, Alisa (see original citation for additional authors) (2017) A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes 66:2019-2032
Calabrese, Gina M; Mesner, Larry D; Stains, Joseph P et al. (2017) Integrating GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module. Cell Syst 4:46-59.e4

Showing the most recent 10 out of 49 publications