An important step toward better understanding neural circuit function was recently made possible thanks to the breakthrough development of optogenetic tools. In this approach, the microbial opsin genes [most notable, Channelrhodopsin (ChR-2) and halorhodopsin (NpHR)] are expressed in neurons either by viral transduction or transgenesis. Neurons expressing opsin can then be activated or inhibited by light at specific wavelengths. Due to its great spatiotemporal resolution, optogenetics is able to functionally dissect brain circuits, as well as to offer new insights into the causal relationship between brain activity and behavior and, possibly, lead to therapies for neuropsychiatric diseases. However, due to the limited tissue penetration of light at the wavelengths necessary to activate optogenetic constructs, the stimulation of behaving animals has to rely on chronically implanted, fiber-optics or mounted LEDs to deliver light into deep brain tissues. Although this method is very useful and has yielded a wealth of information about brain circuits, stimulation via fiber-optics also has important limitations, particularly in regard to chronic stimulation in awake animals. To address this challenging issue, we propose to develop a wireless optogenetic strategy to remotely activate opsins in vivo using a relay nano- illuminator. This approach is buil upon key technologic advances recently made in our laboratory in lanthanide-doped upconversion nanoparticles (UCNPs), a new generation of nanoparticles with unexpected properties. The most significant advantage of UCNPs is their unnatural inverse excitation and emission profiles; i.e., they are excited using biocompatible, low power, deep tissue-penetrant, near infrared radiation that is effectively converted to a higher energy output emission at various shorter wavelengths, including visible light for activation of opsins. We propose two specific aims.
For Aim 1, we will characterize the ability of UNCPs to act as relay illuminators in vitro and in vivo. We will initially focus on the first generation of UCNP nanoparticles (CaF2 coated core/shell UCNP) that our preliminary experiments have demonstrated to exhibit robust emission from deep brain tissue.
In Aim2, we will develop novel combinatorial synthesis to enhance optogenetic performance of lanthanide-doped UCNPs. This new strategy will overcome many of the limitations of current fiber-optic based approaches, and will enable new applications in both fundamental science and human health.

Public Health Relevance

Optogenetic approaches are having significant impact on neuroscience, enabling deconstruction of previously inaccessible brain circuits, and offering new insights into the causal relationship between circuit activity, behavior, and neuropsychiatric diseases. In current optogenetic experiments, light locally delivered to the brain region of interest by fiber-optics modulates the activity of neurons expressing microbial opsins (most notably, ChR2 and NpHR). Unfortunately, stimulation via fiber-optics is an important limitation for the applicability of optogenetics for chronic stimulation in awake animals. Our goal is to develop a nanoilluminator relay to eliminate the need of implanting optical fibers to enable true remote 'wireless' control of neuronal cell function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
4R01MH103133-04
Application #
9115251
Study Section
Special Emphasis Panel (ZMH1)
Program Officer
Freund, Michelle
Project Start
2013-09-26
Project End
2017-07-31
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Biochemistry
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
Lu, Yao; Li, Lihua; Lin, Zefeng et al. (2018) Enhancing Osteosarcoma Killing and CT Imaging Using Ultrahigh Drug Loading and NIR-Responsive Bismuth Sulfide@Mesoporous Silica Nanoparticles. Adv Healthc Mater 7:e1800602
Lu, Yao; Li, Lihua; Li, Mei et al. (2018) Zero-Dimensional Carbon Dots Enhance Bone Regeneration, Osteosarcoma Ablation, and Clinical Bacterial Eradication. Bioconjug Chem 29:2982-2993
Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B et al. (2017) Stable colloids in molten inorganic salts. Nature 542:328-331
Tan, Peng; He, Lian; Han, Gang et al. (2017) Optogenetic Immunomodulation: Shedding Light on Antitumor Immunity. Trends Biotechnol 35:215-226
Huang, Ling; Zhao, Yang; Zhang, He et al. (2017) Expanding Anti-Stokes Shifting in Triplet-Triplet Annihilation Upconversion for In?Vivo Anticancer Prodrug Activation. Angew Chem Int Ed Engl 56:14400-14404
Li, Lihua; Yang, Xianfeng; Hu, Xiaoming et al. (2017) Multifunctional Cu39S28 Hollow Nanopeanuts for In Vivo Targeted Photothermal Chemotherapy. J Mater Chem B 5:6740-6751
Huang, Ling; Li, Zhanjun; Zhao, Yang et al. (2017) Enhancing Photodynamic Therapy through Resonance Energy Transfer Constructed Near-Infrared Photosensitized Nanoparticles. Adv Mater 29:
Zhang, Yuanwei; Huang, Ling; Li, Zhanjun et al. (2016) Illuminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials. ACS Nano 10:3881-3885
Wu, Xiang; Zhang, Yuanwei; Takle, Kendra et al. (2016) Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications. ACS Nano 10:1060-6
Huang, Ling; Li, Zhanjun; Zhao, Yang et al. (2016) Ultralow-Power Near Infrared Lamp Light Operable Targeted Organic Nanoparticle Photodynamic Therapy. J Am Chem Soc 138:14586-14591

Showing the most recent 10 out of 21 publications