Longterm goals of the proposed research are to understand the mechanisms that initiate development of mammalian cerebral cortex, and control formation of the neocortical area map. Findings should be relevant to a range of human disorders that stem from developmental defects in cerebral cortex. This proposal, which has three aims, is based on evidence that the signaling molecule Fibroblast Growth Factor (FGF) 8 acts as a graded morphogen in the embryonic mouse neocortical primordium (NP), and initiates a genetic cascade that leads to formation of the area map. Strikingly, ectopic FGF8 in the NP can induce duplicate areas, and even complex maps.
Aim 1 is built on a previous, systematic search for candidate genes downstream of FGF8 and next in the cascade that leads to cortical regionalization. We used deep sequencing (RNA-Seq) to compare transcriptomes of NP tissue, exposed to different concentrations of FGF8 on different time schedules, mimicking the natural gradient of FGF8, and the natural timed exposure of NP to FGF8. We have identified several candidate genes downstream of FGF8 with regional expression in the NP and a link with embryonic patterning elsewhere. We will use mouse genetics and in utero microelectroporation for gene transfer into living mouse embryos to determine the role of the candiate genes in patterning the area map.
Aim 2 will investigate how FGF8 interacts with FGF receptors (FGFRs), and how potential endogenous FGFR inhibitors and enhancers control the FGF8 grandient, and, consequently, development of the area map.
Aim 3 will investigate the olfactory bulb primordium (OBP) as a promising model system for determining how bounded areas are established in embryonic cortex. The OBP is a distinct bounded domain long before any neocortical areas. We have evidence that FGF8 can induce a secondary OBP and will investigate FGF8 induction of the OBP further in this aim. The OBP is derived from tissue immediately adjacent to the areas of prefrontal cortex. Experiments will explore how these different cortical structures are separated from one another in development. Partial motivation for our experiments here are claims of a common link between olfactory deficits and schizophrenia and autism.

Public Health Relevance

This proposal focuses on the role of Fibroblast Growth Factor (FGF)8 signaling in the developing cerebral cortex. A surprisingly large number of human disorders have been genetically linked to defects in FGF signaling. Therefore, this work is likely to shed light on developmental disorders including schizophrenia, some forms of autism, and a range of human syndromes associated with cognitive impairment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH103211-13
Application #
9110331
Study Section
Neurogenesis and Cell Fate Study Section (NCF)
Program Officer
Panchision, David M
Project Start
2014-08-01
Project End
2018-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
13
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Chicago
Department
Biology
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Desmaris, Elodie; Keruzore, Marc; Saulnier, Amandine et al. (2018) DMRT5, DMRT3, and EMX2 Cooperatively Repress Gsx2 at the Pallium-Subpallium Boundary to Maintain Cortical Identity in Dorsal Telencephalic Progenitors. J Neurosci 38:9105-9121
De Clercq, Sarah; Keruzore, Marc; Desmaris, Elodie et al. (2018) DMRT5 Together with DMRT3 Directly Controls Hippocampus Development and Neocortical Area Map Formation. Cereb Cortex 28:493-509
Ruiz-Reig, Nuria; Andrés, Belén; Huilgol, Dhananjay et al. (2017) Lateral Thalamic Eminence: A Novel Origin for mGluR1/Lot Cells. Cereb Cortex 27:2841-2856
Caronia-Brown, Giuliana; Yoshida, Michio; Gulden, Forrest et al. (2014) The cortical hem regulates the size and patterning of neocortex. Development 141:2855-65