The mammalian cortex is specialized to allow integration of sensory inputs with emotional context and memory to promote behavioral output. The interplay between the subcortical reward circuits, prefrontal cortical areas controlling motivation and hippocampal regions required for learning all contribute to how humans interact with the world and also are key parts of the circuitry of addiction. Addiction as a syndrome is essentially a subversion of the normal functions of the cortex and circuit plasticity leading to maladaptive behaviors. In order to understand the developmental underpinnings of addiction it is necessary to ultimately understand the cues that regulate the development of the various building blocks of the addiction circuit. The construction of the cerebral cortex requires complex orchestration of progenitor proliferation, patterning, neuronal differentiation, migration and axon guidance in order to generate the building blocks of cortical circuitry. Much attention has been paid to signaling molecules produced within the developing cortex that govern these events, but I have been fascinated by signals produced by the mesenchymal cells covering the cortex (the meninges) that we've shown regulate several key events during cortical development. During the entire period of corticogenesis the neuroepithelial stem cells and radial glia as well as many radially and tangentially migrating neurons have intimate physical association with the meninges. Because of this close physical association, several years ago I wondered whether the meninges modulate cortical development in an instructive manner. Following this idea we have identified a series of secreted factors made by the meninges that influence cortical development. These studies were the subject of the last funding cycle for this award. The primary hypothesis of this competitive renewal is that Bmps produced by the meninges regulate radial migration and lamination of cortical neurons. Furthermore we will test the idea that Bmps control radial migration by regulating the behavior of the leading process of migrating neurons via regulation of actin dynamics using the actin modulating protein cofilin. This work will dramatically expand our understanding of the molecular control of cortical development, will help to reveal the basis of a variety of developmental malformations of the cortex and will provide novel insights into the cellular regulation of radial migration in the cortex.
Aim 1 : Determine how meningeal Bmp7 regulates cortical lamination and radial migration.
Aim 2 : Characterize the interaction between Bmp signaling and cofilin phosphorylation in regulating radial migration in the cortex.

Public Health Relevance

In recent years it has become apparent that cortical development and function are related to many of the things that make us most human - emotion, drive and impulsivity - and also to a variety of disorders like autism, epilepsy and addiction. Despite the fundamental importance of cortical development there remain major questions about the key regulatory events that shape the formation of the brain. In this proposal we continue to explore our recent hypothesis that the meningeal coverings of the brain play fundamental roles in the development of the cortex.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH105360-17
Application #
8838263
Study Section
Neurogenesis and Cell Fate Study Section (NCF)
Program Officer
Panchision, David M
Project Start
1998-02-01
Project End
2017-03-31
Budget Start
2015-04-01
Budget End
2017-03-31
Support Year
17
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Neurology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Byun, Sung-Hyun; Kim, Juwan; Han, Dasol et al. (2017) TRBP maintains mammalian embryonic neural stem cell properties by acting as a novel transcriptional coactivator of the Notch signaling pathway. Development 144:778-783
Yadav, Smita; Oses-Prieto, Juan A; Peters, Christian J et al. (2017) TAOK2 Kinase Mediates PSD95 Stability and Dendritic Spine Maturation through Septin7 Phosphorylation. Neuron 93:379-393
Cocas, Laura A; Fernandez, Gloria; Barch, Mariya et al. (2016) Cell Type-Specific Circuit Mapping Reveals the Presynaptic Connectivity of Developing Cortical Circuits. J Neurosci 36:3378-90
Mishra, Swati; Choe, Youngshik; Pleasure, Samuel J et al. (2016) Cerebrovascular defects in Foxc1 mutants correlate with aberrant WNT and VEGF-A pathways downstream of retinoic acid from the meninges. Dev Biol 420:148-165
Bonney, Stephanie; Harrison-Uy, Susan; Mishra, Swati et al. (2016) Diverse Functions of Retinoic Acid in Brain Vascular Development. J Neurosci 36:7786-801
Yabut, Odessa R; Fernandez, Gloria; Huynh, Trung et al. (2015) Suppressor of Fused Is Critical for Maintenance of Neuronal Progenitor Identity during Corticogenesis. Cell Rep 12:2021-34
Choe, Youngshik; Huynh, Trung; Pleasure, Samuel J (2014) Migration of oligodendrocyte progenitor cells is controlled by transforming growth factor ? family proteins during corticogenesis. J Neurosci 34:14973-83
Berberoglu, Michael A; Dong, Zhiqiang; Li, Guangnan et al. (2014) Heterogeneously expressed fezf2 patterns gradient Notch activity in balancing the quiescence, proliferation, and differentiation of adult neural stem cells. J Neurosci 34:13911-23
Choe, Youngshik; Zarbalis, Konstantinos S; Pleasure, Samuel J (2014) Neural crest-derived mesenchymal cells require Wnt signaling for their development and drive invagination of the telencephalic midline. PLoS One 9:e86025
Cocas, Laura; Pleasure, Samuel J (2014) Wrong place, wrong time: ectopic progenitors cause cortical heterotopias. Nat Neurosci 17:894-5

Showing the most recent 10 out of 11 publications