PTEN and FMR1 are two susceptibility genes for autism spectrum disorder (ASD) that encode regulators of the PI3K-Akt-mTOR pathway. Phosphorylation of ribosomal protein S6 (p-S6) is a downstream readout of mTOR activity. Altered levels of p-S6 have been reported in the postmortem cerebral cortex of individuals with autism and in mouse models of autism risk factors. However, it is not known when during development and in which cell types dysregulation of p-S6 signaling occurs and whether this contributes to the symptoms of ASD. Our goal is to identify common cell types and time windows in which p-S6 is dysregulated across two mouse models of autism risk factors, Pten and Fmr1, and to study the relationship between p-S6 dysregulation and social behavioral deficits. The novel hypothesis we develop here is that cell types that are normally enriched for p-S6 in the developing brain are selectively vulnerable to overgrowth caused by Pten or Fmr1 mutations. We propose to carry out this work by using an innovative combination of mapping the activity of a signaling pathway (PI3K-Akt-mTOR/p-S6) key to cellular growth and ASD pathogenesis in the developing brain at unprecedented spatiotemporal resolution, neuroanatomical tracing and behavioral phenotyping to determine when and where dysregulation of p-S6 might contribute to the pathophysiology of ASD risk factors. In addition to understanding molecular and cellular mechanism of social behavioral deficits, this will also test the therapeutic potential of targeting mTOR/p-S6 signaling during a critical developmental time window as a strategy for treating ASD.

Public Health Relevance

Autism spectrum disorder (ASD) is a disorder of the developing brain that has a profound impact at the individual and societal level and is characterized by heterogeneity in symptoms and risk factors. We propose to map the activity of a signaling pathway that is heavily implicated in ASD pathogenesis and treatment, across two mouse models of ASD risk factors in order to find a common molecular and cellular mechanism underlying the behavioral symptoms of ASD. Identifying a common pathophysiology across ASD risk factors will lead us to better understand the causes of ASD and the corresponding treatment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH108519-02
Application #
9304352
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Panchision, David M
Project Start
2016-07-01
Project End
2021-03-31
Budget Start
2017-04-01
Budget End
2018-03-31
Support Year
2
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Scripps Florida
Department
Type
DUNS #
148230662
City
Jupiter
State
FL
Country
United States
Zip Code
33458