Our overall objective is to understand the mechanisms of signal processing in the auditory nervous system. The cat cochlear nucleus provides a model system for studying how sensory nerve inputs produce output discharges in second order neurons. In a general sense, the function of the cochlear nucleus is to receive incoming auditory nerve discharges, modify the message and distribute the resulting output signals to higher centers in the brain. How auditory information is subsequently processed by the brain will be heavily dependent on events in the cochlear nucleus. Because functional properties must ultimately be based on anatomy, we have developed techniques whereby single auditory nerve fibers can first be electrophysiologically characterized by recording with micropipettes inserted into the axon, and then be labelled by intracellular injections of horseradish peroxidase (HRP) through the same pipettes. After histological processing, each labelled neuron can be reconstructed from serial sections from its peripheral ending in the cochlea to its central ramifications in the cochlear nucleus. Since the HRP reaction product is electron dense, these identified neurons can ultimately be examined with electron microscopy in order to determine the nature of their synaptic connections. These methods for staining and studying single neurons after characterizing their physiological response properties will allow us to describe structure-function relationships at the cellular level. The compilation of these data should help to generate a new level of understanding for mechanisms of signal processing, and will set the stage for studying the consequences of cochlear and central pathology on the cochlear nucleus. The possibility of practical prosthetic devices that successfully bypass nonfunctioning cochleas should insure continued interest in studies of stimulus coding at the level of the auditory nerve and cochlear nucleus.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS020156-03
Application #
3400367
Study Section
Hearing Research Study Section (HAR)
Project Start
1984-12-01
Project End
1987-11-30
Budget Start
1986-12-01
Budget End
1987-11-30
Support Year
3
Fiscal Year
1987
Total Cost
Indirect Cost
Name
Harvard University
Department
Type
Schools of Medicine
DUNS #
082359691
City
Boston
State
MA
Country
United States
Zip Code
02115
Sento, S; Ryugo, D K (1989) Endbulbs of held and spherical bushy cells in cats: morphological correlates with physiological properties. J Comp Neurol 280:553-62
Brown, M C; Liberman, M C; Benson, T E et al. (1988) Brainstem branches from olivocochlear axons in cats and rodents. J Comp Neurol 278:591-603
Ryugo, D K; Rouiller, E M (1988) Central projections of intracellularly labeled auditory nerve fibers in cats: morphometric correlations with physiological properties. J Comp Neurol 271:130-42
Brown, M C; Berglund, A M; Kiang, N Y et al. (1988) Central trajectories of type II spiral ganglion neurons. J Comp Neurol 278:581-90
Keithley, E M; Schreiber, R C (1987) Frequency map of the spiral ganglion in the cat. J Acoust Soc Am 81:1036-42
Berglund, A M; Ryugo, D K (1987) Hair cell innervation by spiral ganglion neurons in the mouse. J Comp Neurol 255:560-70
Rouiller, E M; Cronin-Schreiber, R; Fekete, D M et al. (1986) The central projections of intracellularly labeled auditory nerve fibers in cats: an analysis of terminal morphology. J Comp Neurol 249:261-78
Berglund, A M; Ryugo, D K (1986) A monoclonal antibody labels type II neurons of the spiral ganglion. Brain Res 383:327-32
Ryugo, D K; Willard, F H (1985) The dorsal cochlear nucleus of the mouse: a light microscopic analysis of neurons that project to the inferior colliculus. J Comp Neurol 242:381-96