The proposed research is a program for an in-depth neurophysiological study of the dorsal spinocerebellar tract (DSCT) in the cat. There are now sufficient data regarding the incorporation of sensory information by DSCT neurons to question the widely accepted view of its function with respect to the cerebellum. Therefore, the specific aims of this proposal include a critical re-examination of response behavior of single DSCT units and populations of DSCT units to various forms of natural stimulation. The long-term objectives are to describe how sensory information is organized by a first-order spinal sensory nucleus that is specifically concerned with motor control and to use this information to supplement existing knowledge about cerebellar function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS021143-02
Application #
3401998
Study Section
Neurology B Subcommittee 1 (NEUB)
Project Start
1985-09-09
Project End
1988-08-31
Budget Start
1987-03-01
Budget End
1988-08-31
Support Year
2
Fiscal Year
1987
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
Schools of Medicine
DUNS #
168559177
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Valle, M S; Bosco, G; Poppele, R E (2017) Cerebellar compartments for the processing of kinematic and kinetic information related to hindlimb stepping. Exp Brain Res 235:3437-3448
Valle, M S; Eian, J; Bosco, G et al. (2012) The organization of cortical activity in the anterior lobe of the cat cerebellum during hindlimb stepping. Exp Brain Res 216:349-65
Valle, M S; Eian, J; Bosco, G et al. (2008) Cerebellar cortical activity in the cat anterior lobe during hindlimb stepping. Exp Brain Res 187:359-72
Bosco, G; Eian, J; Poppele, R E (2006) Phase-specific sensory representations in spinocerebellar activity during stepping: evidence for a hybrid kinematic/kinetic framework. Exp Brain Res 175:83-96
Bosco, G; Eian, J; Poppele, R E (2005) Kinematic and non-kinematic signals transmitted to the cat cerebellum during passive treadmill stepping. Exp Brain Res 167:394-403
Bosco, G; Rankin, A; Poppele, R E (2003) Modulation of dorsal spinocerebellar responses to limb movement. I. Effect of serotonin. J Neurophysiol 90:3361-71
Bosco, G; Poppele, R E (2003) Modulation of dorsal spinocerebellar responses to limb movement. II. Effect of sensory input. J Neurophysiol 90:3372-83
Bosco, G; Poppele, R E (2002) Encoding of hindlimb kinematics by spinocerebellar circuitry. Arch Ital Biol 140:185-92
Poppele, R E; Bosco, G; Rankin, A M (2002) Independent representations of limb axis length and orientation in spinocerebellar response components. J Neurophysiol 87:409-22
Bosco, G; Poppele, R E (2000) Reference frames for spinal proprioception: kinematics based or kinetics based? J Neurophysiol 83:2946-55

Showing the most recent 10 out of 30 publications