During the first day that embryonic amphibian spinal neurons are electrically excitable, their electrophysiological properties undergo a stereotyped change. The potassium current density increases 3-fold, causing the duration of the calcium-dependent action potential and consequent calcium influx to decrease. Does this result from transcriptional, translational or post-translational regulation of potassium channel gene expression? The proposed studies address this question by determining the normal levels of potassium channel RNA and protein and then perturbing these levels to examine the functional consequences for the differentiation of excitability. Two Xenopus neuronal potassium channel genes have been cloned and will be used to achieve the specific molecular perturbations.
Four aims outline the research plan: 1. How are potassium channel RNA and protein levels regulated in developing embryonic neurons? 2. Do altered potassium channel RNA levels disrupt the development of excitability? 3. Are translational mechanisms involved in regulating potassium channel function? 4. What are the consequences of excess potassium channel RNA on neuronal development? The experimental approach takes advantage of the accessibility of the Xenopus embryo for molecular manipulations and analyses of mechanisms of neuronal development. The techniques include standard RNA (Northerns, RNAase protection, in situ hybridization) and protein methods (generation of fusion proteins and antisera, Westerns, immunocytochemistry), injections of nucleic acids into cleavage stage Xenopus embryos, synthesis of RNA in vitro, mutagenesis of DNA (insertional and site-directed), whole cell voltage and current clamp of neurons developing in vitro and in situ, two electrode voltage clamp recording of currents induced in oocytes by functional expression of cloned genes, and examination of spinal cord organization immunocytochemically in whole mount preparations of embryos. Functional regulation of potassium currents in developing neurons is pivotal for the well-known changes in action potential duration and primary ionic dependence. The immediate goal is to elucidate the molecular mechanisms involved in regulating potassium channel function in developing neurons. These studies will provide information towards the long-term goal of understanding the functional role of developmentally regulated potassium currents and action potentials in the emerging vertebrate nervous system. Preliminary data indicate that elevated potassium channel RNA levels are incompatible with later aspects of neuronal differentiation, and the underlying mechanisms will be identified. This information will be valuable for evaluation and eventual treatment of alterations in excitability associated with disorders of the developing nervous system such as epilepsy or trisomy 21.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS025217-08
Application #
2265502
Study Section
Neurology B Subcommittee 2 (NEUB)
Project Start
1987-09-25
Project End
1997-05-31
Budget Start
1995-06-01
Budget End
1996-05-31
Support Year
8
Fiscal Year
1995
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Physiology
Type
Schools of Medicine
DUNS #
065391526
City
Aurora
State
CO
Country
United States
Zip Code
80045
Moreno, Rosa L; Josey, Megan; Ribera, Angeles B (2017) Zebrafish In Situ Spinal Cord Preparation for Electrophysiological Recordings from Spinal Sensory and Motor Neurons. J Vis Exp :
Carmean, V; Yonkers, M A; Tellez, M B et al. (2015) pigk Mutation underlies macho behavior and affects Rohon-Beard cell excitability. J Neurophysiol 114:1146-57
Hanson, M Gartz; Wilde, Jonathan J; Moreno, Rosa L et al. (2015) Potassium dependent rescue of a myopathy with core-like structures in mouse. Elife 4:
Carlisle, Tara C; Ribera, Angeles B (2014) Connexin 35b expression in the spinal cord of Danio rerio embryos and larvae. J Comp Neurol 522:861-75
Moreno, Rosa L; Ribera, Angeles B (2014) Spinal neurons require Islet1 for subtype-specific differentiation of electrical excitability. Neural Dev 9:19
Do?anli, Canan; Beck, Hans C; Ribera, Angeles B et al. (2013) ?3Na+/K+-ATPase deficiency causes brain ventricle dilation and abrupt embryonic motility in zebrafish. J Biol Chem 288:8862-74
McKeown, Kelly Anne; Moreno, Rosa; Hall, Victoria L et al. (2012) Disruption of Eaat2b, a glutamate transporter, results in abnormal motor behaviors in developing zebrafish. Dev Biol 362:162-71
Wright, Melissa A; Ribera, Angeles B (2010) Brain-derived neurotrophic factor mediates non-cell-autonomous regulation of sensory neuron position and identity. J Neurosci 30:14513-21
Moreno, Rosa L; Ribera, Angeles B (2009) Zebrafish motor neuron subtypes differ electrically prior to axonal outgrowth. J Neurophysiol 102:2477-84
Pineda, Ricardo H; Ribera, Angeles B (2008) Dorsal-ventral gradient for neuronal plasticity in the embryonic spinal cord. J Neurosci 28:3824-34

Showing the most recent 10 out of 18 publications