Cellular heat shock proteins (HSPs) enhance viral gene expression for multiple viral families, although the in vivo significance is unknown. The mechanistic basis for HSP-mediated increases in viral gene expression has been addressed only for DNA viruses and retroviruses, until our work with the paramyxoviruses measles (MV) and canine distemper virus (CDV). Data from our previous funding interval show that the major inducible 70 kDa HSP (hsp72) interacts with two discrete binding motifs (Box-2 and Box-3) on the C- terminus of the MV nucleocapsid protein (N), where Box-3 mediates stimulation of transcription by hsp72 but not the observed increases in genome replication.
Aim one of the current proposal tests the hypothesis that hsp72 binding to Box-2 mediates stimulation of genome replication, and a structure-based approach will be used to understand mechanisms underlying the separable effects of hsp72 on transcription and genome replication.
Aim two determines the in vivo significance of these MV-HSP interactions using a mouse model of brain infection. Elevation of hsp72 levels in neurons at the time of MV challenge results in either enhanced neurovirulence or clearance depending upon mouse strain. It is our hypothesis that hsp72-dependent susceptibility to infection reflects H-2 restricted differences in virus specific T cell responses mediating viral clearance, and the degree of viral hsp72-responsiveness mediated by Box-2 and Box-3. By this model, hsp72-dependent increases in viral antigen expression facilitate adaptive immune responses leading to clearance, although such a protective host response backfires if T cell responses are not adequate to contain the burst in viral replication, leading to increased neurovirulence. In either setting, virus of reduced hsp72 responsiveness would be more prone to establish stable persistent infection. Importantly, these viral and host determinants of neurovirulence have potential broad relevance to other neurotropic Mononegavirales with similar mechanisms of regulated gene expression (e.g., rabies and Borna virus). Relevance to Public Health: Fever induces proteins in the brain that can either protect brain from viral infection or make that viral infection worse. Our work will identify the viral and host determinants of these two possible outcomes so that we may effectively treat the virus infected patient. The experimental system uses measles virus, but the work has potential broad relevance to other viruses that infect brain. ? ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS031693-13
Application #
7465390
Study Section
Virology - A Study Section (VIRA)
Program Officer
Wong, May
Project Start
1994-07-01
Project End
2011-06-30
Budget Start
2008-07-01
Budget End
2011-06-30
Support Year
13
Fiscal Year
2008
Total Cost
$224,840
Indirect Cost
Name
Ohio State University
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Chawla, P; Cook, L; Himmell, L et al. (2015) Coextensive Meningioma and Cholesterol Granuloma in the Forebrain of a Cat. J Vet Intern Med 29:1638-42
Kim, Mi Young; Shu, Yaoling; Carsillo, Thomas et al. (2013) hsp70 and a novel axis of type I interferon-dependent antiviral immunity in the measles virus-infected brain. J Virol 87:998-1009
Moore, Sarah A; Kim, Mi Young; Maiolini, Arianna et al. (2012) Extracellular hsp70 release in canine Steroid Responsive Meningitis-Arteritis. Vet Immunol Immunopathol 145:129-33
Longhi, Sonia (2012) The measles virus N(TAIL)-XD complex: an illustrative example of fuzziness. Adv Exp Med Biol 725:126-41
Habchi, Johnny; Longhi, Sonia (2012) Structural disorder within paramyxovirus nucleoproteins and phosphoproteins. Mol Biosyst 8:69-81
Shu, Yaoling; Habchi, Johnny; Costanzo, Stéphanie et al. (2012) Plasticity in structural and functional interactions between the phosphoprotein and nucleoprotein of measles virus. J Biol Chem 287:11951-67
Halgand, F; Habchi, Johnny; Cravello, Laetitia et al. (2011) Dividing to unveil protein microheterogeneities: traveling wave ion mobility study. Anal Chem 83:7306-15
Oglesbee, Michael; Niewiesk, Stefan (2011) Measles virus neurovirulence and host immunity. Future Virol 6:85-99
Gely, Stephane; Lowry, David F; Bernard, Cedric et al. (2010) Solution structure of the C-terminal X domain of the measles virus phosphoprotein and interaction with the intrinsically disordered C-terminal domain of the nucleoprotein. J Mol Recognit 23:435-47
Couturier, Marie; Buccellato, Matt; Costanzo, Stephanie et al. (2010) High affinity binding between Hsp70 and the C-terminal domain of the measles virus nucleoprotein requires an Hsp40 co-chaperone. J Mol Recognit 23:301-15

Showing the most recent 10 out of 24 publications