The major long-term objectives of this study are to elucidate glial function and neuronal-glial interactions in brain in vivo, and establish novel neuroimaging tracers for glial brain tumors. Glia, a major heterogeneous class of brain cells, are involved in critical aspects of brain structure and function and injury repair. In spite of numerous previous studies, the roles of glial cells in vivo in health and disease are not well understood. Autoradiographic studies are particularly useful for in vivo studies to examine glial function because they can take into account the complex architecture and cell-cell interactions in mature, fully-developed brain. Because acetate is preferentially transported into astrocytes compared to neurons, preliminary studies for this project used radiolabeled acetate to assess metabolic responses of glia to sensory stimulation of neurons and chemical disruption of ion homeostasis. Local acetate metabolism increased by 8-40 percent in response to brain activation, whereas a decrement (7 percent) was observed after acute denervation to eliminate neuronal input; estimates of the rate of acetate utilization suggest that acetate might be a significant fuel for brain. These results indicate that acetate is a useful glial reporter molecule (i.e., a compound metabolized mainly in glia at variable rates) that can be used to assess neuronal-glial interactions in brain in vivo, and test the overall hypothesis that the local rate of acetate utilization by glia varies in proportion to functional activity.
The specific aims of this project are (1) determine the acetate utilization rate in rat brain in vivo by both direct biochemical assays of product formation and by autoradiography; (2) determine the rates of acetate transport into different brain cell types and relationships among acetate, glucose, and oxygen utilization in cultured brain cells; (3) establish glial responses to graded changes in neuronal activity induced by various sensory (e.g., visual, auditory, and whisker) stimuli to normal rats, and assess neuronal-glial interactions; and (4) determine responses of glia to pathophysiological conditions (e.g., puncture wound) that induce reactive astrocytes; (5) establish the use of labeled acetate to localize and monitor growth of glial tumors in rat brain and determine specificity of glial tumor labeling by acetate in human tumor pathological specimens. The proposed studies will lead to a better understanding of glial metabolism in brain, establish fundamental relationships between glial and neuronal activity in brain under normal and pathophysiological conditions, and the develop the use of labeled acetate for human positron emission tomographic (PET) studies of glial function and dysfunction, particularly neuroimaging of brain tumors.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS038230-04
Application #
6625527
Study Section
Special Emphasis Panel (ZRG1-MDCN-2 (01))
Program Officer
Fountain, Jane W
Project Start
1999-12-23
Project End
2004-11-30
Budget Start
2002-12-01
Budget End
2004-11-30
Support Year
4
Fiscal Year
2003
Total Cost
$314,284
Indirect Cost
Name
University of Arkansas for Medical Sciences
Department
Neurology
Type
Schools of Medicine
DUNS #
122452563
City
Little Rock
State
AR
Country
United States
Zip Code
72205
Dienel, Gerald A; Cruz, Nancy F (2015) Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis 30:281-98
Cruz, Nancy F; Ball, Kelly K; Froehner, Stanley C et al. (2013) Regional registration of [6-(14)C]glucose metabolism during brain activation of ?-syntrophin knockout mice. J Neurochem 125:247-59
Dienel, Gerald A (2012) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32:1107-38
Dienel, Gerald A (2012) Fueling and imaging brain activation. ASN Neuro 4:
Cruz, Nancy F; Ball, Kelly K; Dienel, Gerald A (2010) Astrocytic gap junctional communication is reduced in amyloid-?-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice. ASN Neuro 2:e00041
Dienel, Gerald A; Schmidt, Kathleen C; Cruz, Nancy F (2007) Astrocyte activation in vivo during graded photic stimulation. J Neurochem 103:1506-22
Hertz, Leif; Dienel, Gerald A (2005) Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res 79:11-8
Cetin, Neslihan; Dienel, Gerald; Gokden, Murat (2005) CD117 expression in glial tumors. J Neurooncol 75:195-202
Dienel, Gerald A; Hertz, Leif (2005) Astrocytic contributions to bioenergetics of cerebral ischemia. Glia 50:362-88
Cruz, Nancy F; Lasater, Amelia; Zielke, H Ronald et al. (2005) Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. J Neurochem 92:934-47

Showing the most recent 10 out of 17 publications