Low threshold calcium (Ca2+) spikes mediated by T-type Ca2+ channels play a key role in neuronal excitability. These channels open after small fluctuations in the neuronal membrane potential, leading to a further depolarization and the opening of other channels, such as voltage-gated sodium (Na +) channels and high voltage-activated Ca 2+ channels, often leading to bursts of neuronal activity. Over-active burst firing of thalamic neurons is thought to trigger not only absence epileptic seizures, but have also been implicated in a wide range of mental disorders characterized by the presence of thalamocortical dysrhythmias. The discovery of three genes encoding T-type channels has led to many breakthroughs in our understanding of their physiology, and the renewal this grant will extend these studies further into their biophysics, pharmacology, and structure-function of T-type channels. One hypothesis to be tested is that mutations in a T channel gene triggers childhood absence epilepsy (CAE). This channelopathy hypothesis will be tested by introducing these mutations into the channel, and measuring how this affects functional activity. Half of the CAE mutations are clustered in a particular region of the channel, so studies will explore its role in channel function. One goal of these studies is to provide the proof of concept that developing a novel T-type channel blocker will produce an effective antiepileptic drug. Such proof might also come from studies on the mechanism of action of new generation antiepileptic drugs that can treat many types of epilepsy and neuropathic pain. Studies will explore the selectivity of these drugs using patch clamp electrophysiology of cells engineered to express human Na + and Ca2+ channels. Novel compounds have been synthesized that block both channels at lower doses than the parent drug, the antiepileptic phenytoin. Therefore a final goal of this grant will be to use computer modeling to design novel compounds. A fluorescence-based assay has been developed that allows for medium throughput screening for active compounds. Lead compounds will be sent to the NIH Anticonvulsant Drug Development Program for in vivo testing. These studies will test the hypothesis that more potent channel blockers are better antiepileptics and the importance of selectivity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
2R01NS038691-07A1
Application #
6867211
Study Section
Neurotransporters, Receptors, and Calcium Signaling Study Section (NTRC)
Program Officer
Stewart, Randall R
Project Start
1999-07-05
Project End
2008-05-31
Budget Start
2004-09-15
Budget End
2005-05-31
Support Year
7
Fiscal Year
2004
Total Cost
$336,230
Indirect Cost
Name
University of Virginia
Department
Pharmacology
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Perez-Reyes, Edward; Lee, Jung-Ha (2014) Ins and outs of T-channel structure function. Pflugers Arch 466:627-33
Perez-Reyes, Edward (2010) Characterization of the gating brake in the I-II loop of CaV3 T-type calcium channels. Channels (Austin) 4:453-8
Strege, Peter R; Sha, Lei; Beyder, Arthur et al. (2010) T-type Ca(2+) channel modulation by otilonium bromide. Am J Physiol Gastrointest Liver Physiol 298:G706-13
Perez-Reyes, Edward; Van Deusen, Amy L; Vitko, Iuliia (2009) Molecular pharmacology of human Cav3.2 T-type Ca2+ channels: block by antihypertensives, antiarrhythmics, and their analogs. J Pharmacol Exp Ther 328:621-7
Arias-Olguin, Imilla I; Vitko, Iuliia; Fortuna, Michal et al. (2008) Characterization of the gating brake in the I-II loop of Ca(v)3.2 T-type Ca(2+) channels. J Biol Chem 283:8136-44
Shcheglovitov, Aleksandr; Vitko, Iuliia; Bidaud, Isabelle et al. (2008) Alternative splicing within the I-II loop controls surface expression of T-type Ca(v)3.1 calcium channels. FEBS Lett 582:3765-70
Nelson, Michael T; Joksovic, Pavle M; Su, Peihan et al. (2007) Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate. J Neurosci 27:12577-83
Xie, Xinmin; Van Deusen, Amy L; Vitko, Iuliia et al. (2007) Validation of high throughput screening assays against three subtypes of Ca(v)3 T-type channels using molecular and pharmacologic approaches. Assay Drug Dev Technol 5:191-203
Vitko, Iuliia; Bidaud, Isabelle; Arias, Juan Manuel et al. (2007) The I-II loop controls plasma membrane expression and gating of Ca(v)3.2 T-type Ca2+ channels: a paradigm for childhood absence epilepsy mutations. J Neurosci 27:322-30
Nelson, Michael T; Woo, Jiwan; Kang, Ho-Won et al. (2007) Reducing agents sensitize C-type nociceptors by relieving high-affinity zinc inhibition of T-type calcium channels. J Neurosci 27:8250-60

Showing the most recent 10 out of 29 publications