Human copper-zinc superoxide dismutase (SOD1) is a 32 kDa homodimeric metalloprotein that catalyzes the conversion of superoxide radical into molecular oxygen and hydrogen peroxide. The enzyme is particularly abundant in red blood cells and spinal tissue. Approximately 114 different single site mutations in human SOD1 have been linked to an inherited form of amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease, motor neuron disease). Both the inherited (FALS) and sporadic (SALS) forms of the disease are characterized by progressive paralysis resulting from motor neuron degeneration and death. It is now established that SOD1-linked FALS results from the gain of a cytotoxic property and not a loss of enzymatic function. Evidence is accumulating that the toxic property comes from the ability of the mutant SOD1 proteins to assemble into higher order structures (soluble oligomers and insoluble aggregates) that somehow interfere with the neuronal cellular machinery. Using the well established tools of single crystal X-ray diffraction, we recently observed that six different metal-deficient FALS mutant SOD1 proteins can form """"""""amyloid-like"""""""" fibers that are somewhat reminiscent of the types of fibers seen in other neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The pathogenic SOD1 proteins are able to self- associate but the normal, unmutated SOD1 proteins cannot. The experiments outlined in this continuing project are designed to probe pathogenic SOD1 structure and to help answer the following questions: 1) What are the structural consequences of the FALS mutations and how do these amino acid substitutions render the molecule toxic? 2) Does the loss of metal ions play a role in FALS SOD1 pathogenicity? 3) How does the presence or absence of the intrasubunit disulfide bond influence the structural and biophysical properties of pathogenic SOD1? 4) Is the mode of self-association we observe in X-ray studies the basis for how the pathogenic SOD1 proteins aggregate in living cells? 5) What are the structural elements of SOD1 proteins that are recognized by the 20 S proteasome so that they may be degraded? 6) Could soluble oligomers (protofibrils) and/or insoluble amyloids of pathogenic SOD1 act as proteasomal inhibitors? Answers to questions such as these are required for a molecular understanding of SOD1 linked FALS and for the design of therapeutic agents aimed inhibiting the aggregation process. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS039112-08
Application #
7418560
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Refolo, Lorenzo
Project Start
2000-05-05
Project End
2011-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
8
Fiscal Year
2008
Total Cost
$318,974
Indirect Cost
Name
University of Texas Health Science Center San Antonio
Department
Biochemistry
Type
Schools of Medicine
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B et al. (2017) Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. J Biol Chem 292:12025-12040
Sea, Kevin; Sohn, Se Hui; Durazo, Armando et al. (2015) Insights into the role of the unusual disulfide bond in copper-zinc superoxide dismutase. J Biol Chem 290:2405-18
Ivanova, Magdalena I; Sievers, Stuart A; Guenther, Elizabeth L et al. (2014) Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. Proc Natl Acad Sci U S A 111:197-201
Bouldin, Samantha D; Darch, Maxwell A; Hart, P John et al. (2012) Redox properties of the disulfide bond of human Cu,Zn superoxide dismutase and the effects of human glutaredoxin 1. Biochem J 446:59-67
Leitch, Jeffry M; Li, Cissy X; Baron, J Allen et al. (2012) Post-translational modification of Cu/Zn superoxide dismutase under anaerobic conditions. Biochemistry 51:677-85
Seetharaman, Sai V; Winkler, Duane D; Taylor, Alexander B et al. (2010) Disrupted zinc-binding sites in structures of pathogenic SOD1 variants D124V and H80R. Biochemistry 49:5714-25
Seetharaman, Sai V; Taylor, Alexander B; Holloway, Stephen et al. (2010) Structures of mouse SOD1 and human/mouse SOD1 chimeras. Arch Biochem Biophys 503:183-90
You, Zheng; Cao, Xiaohang; Taylor, Alexander B et al. (2010) Characterization of a covalent polysulfane bridge in copper-zinc superoxide dismutase . Biochemistry 49:1191-8
Tiwari, Ashutosh; Liba, Amir; Sohn, Se Hui et al. (2009) Metal deficiency increases aberrant hydrophobicity of mutant superoxide dismutases that cause amyotrophic lateral sclerosis. J Biol Chem 284:27746-58
Seetharaman, Sai V; Prudencio, Mercedes; Karch, Celeste et al. (2009) Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis. Exp Biol Med (Maywood) 234:1140-54

Showing the most recent 10 out of 26 publications