Amyotrophic lateral sclerosis is a prevalent neurological disorder characterized by inexorable muscle weakness leading to death. The principal pathological finding in amyotrophic lateral sclerosis is loss of nerve cells in the anterior horns of the spinal cord, the motor nuclei of the brainstem, and the upper motor neurons of the cerebral cortex. Investigations aimed at preventing or limiting progression of amyotrophic lateral sclerosis have thus focused on the mechanisms by which neurons degenerate. A transgenic mouse model has been developed that possesses many of the pathological and clinical features of human familial and sporadic amyotrophic lateral sclerosis. As nitric oxide (NO) has been shown to mediate neuronal loss in other neurodegenerative conditions, several groups have investigated the role that NO may play in disease progression | in the transgenic model. The results have been conflicting likely because currently available inhibitors of nitric oxide synthase do not permit optimal control of NO generation within particular cell types and subcellular compartments. A novel potential strategy for regulating nitric oxide synthesis involves the enzyme arginase that can | regulate availability of arginine in the cytoplasm or mitochondria. In preliminary studies, we have shown that: 1) extracellular arginase blocks neuronal apoptosis and 2) arginase immunoreactivity is, upregulated in the spinal cord of ALS transgenic mice as well as humans with the sporadic and familial forms of amyotrophic lateral sclerosis. These preliminary results lead to the overall hypothesis to be tested in this proposal: about Interventions aimed at promoting arginase activities in microglia, astrocytes and/or motor neurons will limit availability of cell arginine for toxic NO generation and thereby diminish cell death and disease progression in amyotrophic lateral sclerosis but permit NO to, mediate its survival promoting effects in each of these cell types. We propose to test this hypothesis by: 1) determining the cell types and subcellular compartments where arginase is expressed in the normal central nervous system of humans and mice, and how the localization and levels of these isoforms change in amyotrophic lateral sclerosis as well as in a transgenic mouse! Model of amyotrophic lateral sclerosis and how this compares to the localization of NOS (all forms) in these tissues; and 2) determining whether increased arginase activity in microglia, astrocytes or neurons from control mice or mice over expressing SOD1 mutant (G93A) will abrogate NO mediated toxicity of motor neurons induced by growth factor deprivation, excitotoxins or LPS/IFN-gamma treatment. These studies promise to enhance our understanding of how arginine about metabolism, including the synthesis of NO, is regulated in the normal and abnormal nervous system.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BDCN-3 (01))
Program Officer
Refolo, Lorenzo
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Winifred Masterson Burke Med Research Institute
White Plains
United States
Zip Code
Alim, Ishraq; Haskew-Layton, Renee E; Aleyasin, Hossein et al. (2014) Spatial, temporal, and quantitative manipulation of intracellular hydrogen peroxide in cultured cells. Methods Enzymol 547:251-73
Ma, Thong C; Campana, Aline; Lange, Philipp S et al. (2010) A large-scale chemical screen for regulators of the arginase 1 promoter identifies the soy isoflavone daidzeinas a clinically approved small molecule that can promote neuronal protection or regeneration via a cAMP-independent pathway. J Neurosci 30:739-48
Siddiq, Ambreena; Aminova, Leila R; Troy, Carol M et al. (2009) Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J Neurosci 29:8828-38
Aminova, Leila R; Siddiq, Ambreena; Ratan, Rajiv R (2008) Antioxidants, HIF prolyl hydroxylase inhibitors or short interfering RNAs to BNIP3 or PUMA, can prevent prodeath effects of the transcriptional activator, HIF-1alpha, in a mouse hippocampal neuronal line. Antioxid Redox Signal 10:1989-98
Siddiq, Ambreena; Aminova, Leila R; Ratan, Rajiv R (2008) Prolyl 4-hydroxylase activity-responsive transcription factors: from hydroxylation to gene expression and neuroprotection. Front Biosci 13:2875-87
Lange, Philipp S; Chavez, Juan C; Pinto, John T et al. (2008) ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J Exp Med 205:1227-42
Siddiq, Ambreena; Aminova, Leila R; Ratan, Rajiv R (2007) Hypoxia inducible factor prolyl 4-hydroxylase enzymes: center stage in the battle against hypoxia, metabolic compromise and oxidative stress. Neurochem Res 32:931-46
Ratan, Rajiv R; Siddiq, Ambreena; Smirnova, Natalya et al. (2007) Harnessing hypoxic adaptation to prevent, treat, and repair stroke. J Mol Med 85:1331-8
Estevez, Alvaro G; Sahawneh, Mary Anne; Lange, Philipp S et al. (2006) Arginase 1 regulation of nitric oxide production is key to survival of trophic factor-deprived motor neurons. J Neurosci 26:8512-6
Drottar, Marie; Liberman, M Charles; Ratan, Rajiv R et al. (2006) The histone deacetylase inhibitor sodium butyrate protects against cisplatin-induced hearing loss in guinea pigs. Laryngoscope 116:292-6

Showing the most recent 10 out of 19 publications