In this proposal, we plan to further delineate the molecular and cellular basis of SBMA disease pathogenesis. In our previously funded research grant, we sought the molecular and mechanistic basis of SBMA disease pathogenesis by defining the role of polyglutamine-expanded androgen receptor in the transcriptional dysregulation originally uncovered in our highly representative mouse model for SBMA. Among the crucial advances that we have made toward achieving this goal is our demonstration that androgen receptor (AR) normal transcription function is central to understanding SBMA disease pathogenesis. The discovery of a role for AR normal function in SBMA motor neuron disease suggests that AR may function as a trophic factor in motor neurons. Recent work has focused upon delineating which AR domains are involved in mediating AR protein neurotoxicity, and we have identified a key domain that enhances AR protein toxicity. In a parallel line of investigation, we have developed a new BAC transgenic mouse model for SBMA that features a floxed first exon to permit cell-type specific excision of mutant AR gene expression. Based upon these advances, we will determine the molecular and cellular basis of SBMA by pursuing three lines of investigation: First, we will identify the cell types responsible for SBMA disease pathogenesis in our floxed first exon BAC transgenic model of SBMA (fxAR121) by crossing fxAR121 mice with transgenic mice expressing muscle-specific or motor neuron-specific Cre recombinase;confirming excision of AR121 in targeted cell types;and determining if elimination of expression of mutant AR from muscle cells or motor neurons affects onset or progression of SBMA. Second, we will test if loss of AR normal function contributes to SBMA by performing combined RNA-Seq and ChIP-Seq analysis of MN-1 cells stably transfected with AR24Q protein under conditions of hypoxia in the presence or absence of DHT;comparing the two gene lists to identify primary target genes in the AR regulome that mediate protection from hypoxic stress in motor neurons;and measuring the level of expression of AR neuroprotection genes in presymptomatic and early symptomatic spinal cords of SBMA and ALS transgenic mice. Third, we will test if post-translation modification of lysine 385 in AR protein plays a key role in neurotoxicity by confirming that the K385 mutation results in proteotoxicity in a fly model of SBMA;determining if transgenic expression of normal Q length AR with the K385R mutation is sufficient to produce neurodegeneration in mice;testing if transgenic mice expressing polyQ-expanded AR with the K385R mutation display altered disease progression;and determining if SUMOylation alters turnover of AR protein, or affects native protein complex interactions of AR. These studies should provide insights into mechanisms of motor neuron disease, and could reveal targets for therapy development for SBMA and related motor neuron diseases.

Public Health Relevance

Studies of X-linked spinal &bulbar muscular atrophy (SBMA) and related motor neuron diseases have highlighted the importance of understanding the cellular and molecular basis of disease pathogenesis. In this project, we will examine the cellular basis of SBMA through the use of a powerful floxed first exon BAC transgenic mouse model, we will define how AR-regulated gene expression is neuroprotective in motor neurons, and we will determine if a post-translational modification of AR is fundamental to AR proteotoxicity using a combination of approaches in cell culture, Drosophila, and mouse models. These studies should provide insights into mechanisms of motor neuron disease, and could reveal targets for therapy development for SBMA and related motor neuron diseases.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Cellular and Molecular Biology of Neurodegeneration Study Section (CMND)
Program Officer
Gubitz, Amelie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Internal Medicine/Medicine
Schools of Medicine
La Jolla
United States
Zip Code
Polanco, Maria Josè; Parodi, Sara; Piol, Diana et al. (2016) Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy. Sci Transl Med 8:370ra181
Todd, Tiffany W; Kokubu, Hiroshi; Miranda, Helen C et al. (2015) Nemo-like kinase is a novel regulator of spinal and bulbar muscular atrophy. Elife 4:e08493
Cortes, Constanza J; La Spada, Albert R (2015) Autophagy in polyglutamine disease: Imposing order on disorder or contributing to the chaos? Mol Cell Neurosci 66:53-61
Lieberman, Andrew P; Yu, Zhigang; Murray, Sue et al. (2014) Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy. Cell Rep 7:774-84
Cortes, Constanza J; Ling, Shuo-Chien; Guo, Ling T et al. (2014) Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy. Neuron 82:295-307
Montague, Karli; Malik, Bilal; Gray, Anna L et al. (2014) Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy. Brain 137:1894-906
Cortes, Constanza J; Miranda, Helen C; Frankowski, Harald et al. (2014) Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat Neurosci 17:1180-9
Furrer, Stephanie A; Waldherr, Sarah M; Mohanachandran, Mathini S et al. (2013) Reduction of mutant ataxin-7 expression restores motor function and prevents cerebellar synaptic reorganization in a conditional mouse model of SCA7. Hum Mol Genet 22:890-903
Fujita, Kyota; Nakamura, Yoko; Oka, Tsutomu et al. (2013) A functional deficiency of TERA/VCP/p97 contributes to impaired DNA repair in multiple polyglutamine diseases. Nat Commun 4:1816
Malik, Bilal; Nirmalananthan, Niranjanan; Gray, Anna L et al. (2013) Co-induction of the heat shock response ameliorates disease progression in a mouse model of human spinal and bulbar muscular atrophy: implications for therapy. Brain 136:926-43

Showing the most recent 10 out of 22 publications