Vesicular Zn2+ is known to be toxic to neurons following its translocation from presynaptic release sites into the cytoplasm of postsynaptic cells that are destined to die. In addition to this extracellular source of Zn2+, we have observed that this metal can be released from intracellular metal binding proteins by thiol axidants. We have shown further that intracellularly liberated Zn2+ is a powerful apoptotic stimulus in neurons. Here, using molecular, cellular, and whole animal approaches, we propose to evaluate whether the release of intracellular Zn2+ represents a common feature in neuronal cell death following oxidative stress.
The Specific Aims of this proposal are: 1. To determine whether peroxynitrite and nitric oxide trigger a neurotoxic cascade that results from the intracellular release of zinc in vitro. 2. To identify molecular components of the cell death pathway that are associated with the intracellular release of zinc in vitro. 3 To evaluate whether the intracellular release of zinc triggers apoptosis in an axotomy-induced in vivo model of neuronal cell death. Experiments described within these aims will test the hypothesis that the liberation of intracellular Zn2+ represents an important and ubiquitous trigger for cell death in neuronal injury. The long-term goal of this research program is to provide additional therapeutic targets to prevent or minimize neuronal cell death in the large number of neurological disorders associated with oxidative injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS043277-03
Application #
6779248
Study Section
Special Emphasis Panel (ZRG1-BDCN-3 (01))
Program Officer
Nunn, Michael
Project Start
2002-09-30
Project End
2007-07-31
Budget Start
2004-08-01
Budget End
2005-07-31
Support Year
3
Fiscal Year
2004
Total Cost
$352,461
Indirect Cost
Name
University of Pittsburgh
Department
Biology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Justice, Jason A; Manjooran, Daniel T; Yeh, Chung-Yang et al. (2018) Molecular Neuroprotection Induced by Zinc-Dependent Expression of Hepatitis C-Derived Protein NS5A Targeting Kv2.1 Potassium Channels. J Pharmacol Exp Ther 367:348-355
Justice, Jason A; Schulien, Anthony J; He, Kai et al. (2017) Disruption of KV2.1 somato-dendritic clusters prevents the apoptogenic increase of potassium currents. Neuroscience 354:158-167
Yeh, Chung-Yang; Bulas, Ashlyn M; Moutal, Aubin et al. (2017) Targeting a Potassium Channel/Syntaxin Interaction Ameliorates Cell Death in Ischemic Stroke. J Neurosci 37:5648-5658
Schulien, Anthony J; Justice, Jason A; Di Maio, Roberto et al. (2016) Zn(2+) -induced Ca(2+) release via ryanodine receptors triggers calcineurin-dependent redistribution of cortical neuronal Kv2.1 K(+) channels. J Physiol 594:2647-59
Li, Dong; Yuan, Hongjie; Ortiz-Gonzalez, Xilma R et al. (2016) GRIN2D Recurrent De Novo Dominant Mutation Causes a Severe Epileptic Encephalopathy Treatable with NMDA Receptor Channel Blockers. Am J Hum Genet 99:802-816
Clemens, Katerina; Yeh, Chung-Yang; Aizenman, Elias (2015) Critical role of Casein kinase 2 in hepatitis C NS5A-mediated inhibition of Kv2.1 K(+) channel function. Neurosci Lett 609:48-52
Aizenman, Elias; Mastroberardino, Pier G (2015) Metals and neurodegeneration. Neurobiol Dis 81:1-3
He, Kai; McCord, Meghan C; Hartnett, Karen A et al. (2015) Regulation of Pro-Apoptotic Phosphorylation of Kv2.1 K+ Channels. PLoS One 10:e0129498
Hershfinkel, Michal; Ford, Dianne; Kelleher, Shannon et al. (2015) Seashells by the zinc shore: a meeting report of the International Society for Zinc Biology, Asilomar, CA 2014. Metallomics 7:1299-304
Gilad, David; Shorer, Sharon; Ketzef, Maya et al. (2015) Homeostatic regulation of KCC2 activity by the zinc receptor mZnR/GPR39 during seizures. Neurobiol Dis 81:4-13

Showing the most recent 10 out of 37 publications