Netrins are a family of well-characterized guidance cues that are conserved across different species and are homologous to laminin beta2. They promote axon outgrowth and guide neuronal growth cones in the developing nervous system. The intracellular signaling mechanism of netrin is unclear. In preliminary studies, we found that DCC (deleted in colorectal cancer), a netrin receptor, interacts directly with the focal adhesion kinase (FAK), a tyrosine kinase implicated in integrin signaling. Netrin-1 stimulation results in increased DCC-FAK interaction and FAK tyrosine phosphorylation at multiple residues including tyrosines 397 and 861. Furthermore, netrin-1 induces DCC/neogenin tyrosine phosphorylation in a manner dependent on FAK and an Src family kinase. The tyrosine phosphorylated DCC, on the other hand, binds to Fyn, an Src family kinase enriched in the brain. Functionally, treatment of rat cortical explants with PP2, an inhibitor of Src kinases, prevents netrin-1 from inducing neurite outgrowth. Expression of dominant negative FAK mutant blocks netrin-1 induced attractive turning in Xenopus spinal neurons. Based on these preliminary results, we hypothesize that FAK is important in mediating and/or regulating netrin functions. To test this hypothesis, we will: (1) determine the role of DCC tyrosine phosphorylation in netrin-induced axon outgrowth and turning, (2) determine the role of FAK in netrin-induced axon outgrowth and turning, and (3) investigate the effects of laminin on netrin-induced axon outgrowth and turning. The proposed research will provide not only key pieces of the signaling pathway by which netrin-DCC regulate axon outgrowth and growth cone guidance, but also insight into how signaling networks between netrin-DCC and extracellular matrix-integrins are organized. Such knowledge is essential for understating the mechanisms involved in axon path-finding in neural development and birth defects with malformation of the brain and spinal cord.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS045710-02
Application #
6737520
Study Section
Special Emphasis Panel (ZRG1-MDCN-2 (02))
Program Officer
Mamounas, Laura
Project Start
2003-04-15
Project End
2004-07-31
Budget Start
2004-03-01
Budget End
2004-07-31
Support Year
2
Fiscal Year
2004
Total Cost
$94,250
Indirect Cost
Name
University of Alabama Birmingham
Department
Neurosciences
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Zhou, Zheng; Immel, David; Xi, Cai-Xia et al. (2006) Regulation of osteoclast function and bone mass by RAGE. J Exp Med 203:1067-80
Xie, Yi; Hong, Yan; Ma, Xiao-Yue et al. (2006) DCC-dependent phospholipase C signaling in netrin-1-induced neurite elongation. J Biol Chem 281:2605-11
Xie, Yi; Ding, Yu-Qiang; Hong, Yan et al. (2005) Phosphatidylinositol transfer protein-alpha in netrin-1-induced PLC signalling and neurite outgrowth. Nat Cell Biol 7:1124-32
Ren, Yuan; Meng, Songshu; Mei, Lin et al. (2004) Roles of Gab1 and SHP2 in paxillin tyrosine dephosphorylation and Src activation in response to epidermal growth factor. J Biol Chem 279:8497-505
Xiong, Wen-Cheng; Mei, Lin (2003) Roles of FAK family kinases in nervous system. Front Biosci 8:s676-82
Kim, Chang-Hoon; Xiong, Wen C; Mei, Lin (2003) Regulation of MuSK expression by a novel signaling pathway. J Biol Chem 278:38522-7