? Fragile X syndrome is one of the most commonly inherited forms of human mental retardation with an incidence rate of 1 in 4000 males and 1 in 6000 females. It is caused by the loss of FMR1 gene function. Patients with Fragile X syndrome suffer from a variety of symptoms including; mental retardation, attention deficit, hyperactivity, sleep disorders, anxiety, unstable mood and autistic-like behaviors. Physical defects include macroorchidism and irregular dendritic spine morphology. In previous studies, our lab developed a Fragile X model in Drosophila. This model is based on the dfmr1 (also called dfxr) gene, which has a high degree of sequence identity/similarity to the FMR1 gene. The dFMR1 protein has similar RNA binding properties, developmental expression pattern and subcellular distribution to the FMR1 protein (FMRP). In recent studies, we have shown that dfmr1 null mutants display several behavioral defects that bear similarity to symptoms of Fragile X patients. The relevant phenotypes in Drosophila include arrhythmic circadian behavior, attention deficit during courtship, memory defects and subtle defects of neuronal morphology. The similarities in the biochemical properties of dFMR1 and FMRP and their loss of function phenotypes suggest that these two proteins have conserved function in similar behavioral and developmental processes. Thus the Drosophila dfmr1 mutants are a relevant model to study aspects of Fragile X syndrome. To ameliorate Fragile X syndrome it is imperative that we understand when and how FMR1 activity functions to prevent cognitive and behavioral defects. The temporal requirements and molecular role of FMR1 are currently not known. We propose to use the Drosophila model of Fragile X to determine when dfmr1 activity is required to determine if the behavioral defects are due to developmental or physiological defects. We are also investigating possible physiological pathways affected by loss of dfmr1 function. Through these studies we have identified a pharmacological treatment that rescues the courtship and memory defects displayed in our dfmr1 mutants. In this proposal we will determine and verify a route of action of this drug to identify potential targets for the treatment of Fragile X syndrome. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS046573-01A2
Application #
6869782
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Riddle, Robert D
Project Start
2004-09-15
Project End
2008-04-30
Budget Start
2004-09-15
Budget End
2005-04-30
Support Year
1
Fiscal Year
2004
Total Cost
$329,878
Indirect Cost
Name
University of Pennsylvania
Department
Genetics
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Pepper, Anita; Bhogal, Balpreet; Jongens, Thomas (2012) Tandem Affinity Purification in Drosophila Heads and Ovaries. Bio Protoc 2:
Choi, Catherine H; Schoenfeld, Brian P; Bell, Aaron J et al. (2011) Pharmacological reversal of synaptic plasticity deficits in the mouse model of fragile X syndrome by group II mGluR antagonist or lithium treatment. Brain Res 1380:106-19
McBride, Sean M J; Choi, Catherine H; Schoenfeld, Brian P et al. (2010) Pharmacological and genetic reversal of age-dependent cognitive deficits attributable to decreased presenilin function. J Neurosci 30:9510-22
Choi, Catherine H; McBride, Sean M J; Schoenfeld, Brian P et al. (2010) Age-dependent cognitive impairment in a Drosophila fragile X model and its pharmacological rescue. Biogerontology 11:347-62
Kirino, Yohei; Kim, Namwoo; de Planell-Saguer, Mariàngels et al. (2009) Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol 11:652-8
Pepper, Anita S-R; Beerman, Rebecca W; Bhogal, Balpreet et al. (2009) Argonaute2 suppresses Drosophila fragile X expression preventing neurogenesis and oogenesis defects. PLoS One 4:e7618