A major shift in scientific perspective on the nature and use of electrophysiological brain data is now ongoing a shift from measurement and visualization of individual channel signals (in the 'recording channel space') to visualizing and interpreting the data directly within a suitable inverse model representing activity reaching the electrodes by volume conduction from a set of effective data sources in native 'brain source space'. An equivalent shift, via the development and exploitation of an appropriate inverse imaging model, made possible the phenomenon of structural and functional magnetic resonance imaging (fMRI). While the electrophysiological inverse problem is still difficult, dramatic progress has been and is being made through combined use of multimodal imaging and modern statistical signal processing methods. Recovering the considerable degree of spatial source resolution available in high-density scalp electroencephalographic (EEG) and other electrophysiological data, while retaining its natural advantage over other functional imaging methods in temporal resolution, has begun to yield a steady stream of new information about patterns of distributed brain processing supporting human behavior and experience. Relative to other brain imaging modalities, EEG has substantial and increasing cost and mobility advantages, making promotion of new EEG methods for source space analysis of increasing interest and importance for brain and health research. However, applying new source signal and signal processing models to electrophysiological data is complex and increasingly involves application of modern mathematical methods whose details are not within the training of most health research professionals. The EEGLAB signal processing environment, an open source software project of the Swartz Center for Computational Neuroscience (SCCN) at the University of California San Diego, began as a set of EEG data analysis running on MATLAB (The Mathworks, Inc.) released on the World Wide Web in 1997. EEGLAB was first released from SCCN in 2001. Now, more than ten years later, the EEGLAB reference paper (Delorme & Makeig, 2004) has over 2,350 Google scholar citations (increasing at above 1 per day), the opt-in EEGLAB discussion email list links over 5,000 researchers, the news list over 9,000, and a recent survey of 687 researcher respondents reports EEGLAB to be the software environment most widely used for electrophysiological data analysis worldwide. EEGLAB is thus now a de facto standard supporting a wide range of EEG and other electrophysiological research studies and teaching labs. At least 35 EEGLAB plug-in toolsets have now been released by researchers from many laboratories. Under NIH PAR 11-028 we propose renewal funding to further develop and maintain the EEGLAB software framework. We propose new and better tools for brain source and source network modeling and localization, an expanded online EEGLAB course and workshop, better statistical inference modeling of group data, and new support for automated source decomposition, measure computation, data duration, and data sharing.

Public Health Relevance

A major shift in scientific perspective on the nature and use of human electrophysiological data is now accelerating from measuring and visualizing individual scalp channel signals to directly visualizing and interpreting their brain sources. The EEGLAB signal processing environment, an open source software project of the Swartz Center for Computational Neuroscience (SCCN) at the University Of California San Diego (UCSD), supports a large number of EEG and related electrophysiological research studies and teaching labs. We propose continued funding to further develop and maintain the EEGLAB environment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS047293-11
Application #
8900348
Study Section
Biodata Management and Analysis Study Section (BDMA)
Program Officer
Gnadt, James W
Project Start
2003-12-01
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
11
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Hsu, Sheng-Hsiou; Pion-Tonachini, Luca; Palmer, Jason et al. (2018) Modeling brain dynamic state changes with adaptive mixture independent component analysis. Neuroimage 183:47-61
Gola, Mateusz; Wordecha, Ma?gorzata; Sescousse, Guillaume et al. (2017) Can Pornography be Addictive? An fMRI Study of Men Seeking Treatment for Problematic Pornography Use. Neuropsychopharmacology 42:2021-2031
Perez, Veronica B; Tarasenko, Melissa; Miyakoshi, Makoto et al. (2017) Mismatch Negativity is a Sensitive and Predictive Biomarker of Perceptual Learning During Auditory Cognitive Training in Schizophrenia. Neuropsychopharmacology 42:2206-2213
Töllner, Thomas; Wang, Yijun; Makeig, Scott et al. (2017) Two Independent Frontal Midline Theta Oscillations during Conflict Detection and Adaptation in a Simon-Type Manual Reaching Task. J Neurosci 37:2504-2515
Pion-Tonachini, Luca; Makeig, Scott; Kreutz-Delgado, Ken (2017) Crowd labeling latent Dirichlet allocation. Knowl Inf Syst 53:749-765
Wagner, Johanna; Makeig, Scott; Gola, Mateusz et al. (2016) Distinct ? Band Oscillatory Networks Subserving Motor and Cognitive Control during Gait Adaptation. J Neurosci 36:2212-26
Loo, Sandra K; Lenartowicz, Agatha; Makeig, Scott (2016) Research Review: Use of EEG biomarkers in child psychiatry research - current state and future directions. J Child Psychol Psychiatry 57:4-17
Brunner, Clemens; Billinger, Martin; Seeber, Martin et al. (2016) Volume Conduction Influences Scalp-Based Connectivity Estimates. Front Comput Neurosci 10:121
Bigdely-Shamlo, Nima; Cockfield, Jeremy; Makeig, Scott et al. (2016) Hierarchical Event Descriptors (HED): Semi-Structured Tagging for Real-World Events in Large-Scale EEG. Front Neuroinform 10:42
Piazza, Caterina; Cantiani, Chiara; Akalin-Acar, Zeynep et al. (2016) ICA-derived cortical responses indexing rapid multi-feature auditory processing in six-month-old infants. Neuroimage 133:75-87

Showing the most recent 10 out of 49 publications