People are living longer, which increases their risk of developing neurodegenerative disorders. Such disorders can be characterized by the accumulation and aggregation of specific proteins in the brain. These aggregates often contain protein fragments produced by increases in protein cleavage or defects in protein quality control (PQC) systems such as regulated protein degradation. We do not know how all protein fragments are metabolized and how they cause toxicity to neurons. Our overall goal is to understand the effects of protein aggregates on normal cell function and to identify cellular pathways that prevent toxicity. Previously, we found that the N-degron pathway can degrade specific C-terminal fragments (CTFs) associated with neurodegenerative disorders. We also found that the N- termini of CTFs influence their metabolism, tendency to aggregate, and the morphology of their aggregates. In recent work, we found that Bcl-2-associated athanogene 6 (BAG6) interacts with CTFs linked to disease and increases their solubility. BAG6 is a component of a chaperone complex that determines the fate of unfolded proteins. In this work, we developed new methods to examine CTFs with natural N-termini in cultured neurons and in transgenic mouse models. Using these methods, we will determine how BAG6 regulates the metabolism of CTFs that are prone to aggregate. We will also establish whether aggregates of CTFs cause toxicity that leads to neurodegeneration. This project will help us better understand how protein fragments are toxic and how cellular PQC guards against neurodegeneration.

Public Health Relevance

In neurodegenerative diseases, protein fragments can cluster in the brain. We do not know how these protein fragments are metabolized or how they cause toxicity. We will study how these protein fragments cluster and become toxic to brain cells. We will also study how systems in the cell prevent these fragments from clustering in the brain. This work may advance therapies to treat or prevent neurodegeneration in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Academic Research Enhancement Awards (AREA) (R15)
Project #
2R15NS095317-02A1
Application #
10113946
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Gubitz, Amelie
Project Start
2016-05-15
Project End
2024-01-31
Budget Start
2021-02-15
Budget End
2024-01-31
Support Year
2
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Texas Woman's University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
068979848
City
Denton
State
TX
Country
United States
Zip Code
76204