Actin filaments and microtubules are dynamic cytoskeletal polymers that have important roles in cell physiology and determine cell morphology. The complex cellular morphology of neurons is directly related to the function of neurons in the nervous system. Thus, neurons provide an excellent model system for investigating the dynamics of the cytoskeleton as it relates to cellular functions. Actin filaments are of fundamental importance to the development and maintenance of connectivity patterns between neurons, and the formation and function of synapses. Neurons constantly deliver new cytoskeletal proteins synthesized in the cell body to the distal axon through axonal transport. The process of axonal transport is required for maintenance of a functional nervous system and is impaired in a variety of disease states. Filopodia are slender finger-like cellular projections that are strictly dependent on actin filaments and are required for axon guidance and synapse formation. Understanding the mechanisms responsible for filopodial initiation is thus of direct relevance to the understanding of regeneration and the maintenance of nervous system function. This proposal presents studies aimed at (1) determining the form (e.g., filaments versus monomers) of actin transport in axons, and (2) determining the actin-based mechanism of filopodia initiation. The form in which cytoskeletal proteins are transported is controversial. From in vitro studies using neurons transfected with EGFP-actin, we provide preliminary descriptive evidence suggestive of the transport of actin filaments and experimental evidence in favor of the transport of monomeric actin. A series of studies is detailed to experimentally test the hypothesis that actin filaments are the form of actin transport. Additionally, based on live imaging of EGFP-actin in axons and growth cones we have identified the presence of spontaneously formed actin puncta that serve as precursors to filopodial formation. These observations provide a model system for investigating the dynamic cytoskeletal basis of filopodial formation in living neurons. We present studies aimed at determining the role of extra-cellular signals, signaling pathways, and microtubules in regulating the earliest events in filopodial initiation.
Showing the most recent 10 out of 22 publications