A considerable amount of traumatic brain injury (TBI) research has focused on the pathologic significance of mechanical and chemical insults (e.g. disturbed calcium homeostasis) to the axons. Yet the precise biochemical mechanisms of axonal injury remain unclear. White matter loss and demyelination have been insufficiently studied in TBI, and we have little knowledge of the biochemical mechanisms of myelin damage. In the past, our laboratories and others have documented over-expression and activation of various proteases (e.g. calpains, caspases, and matrix metalloproteases) following brain injury. In this proposed research, we hypothesize that a subset of structural proteins in axons and myelin are differentially vulnerable to proteolysis after TBI. Inevitably, such proteolysis would result in degradation that significantly compromises the structural and functional integrity of axons and myelin sheaths leading to long-lasting axonal damage and demyelination. The proposed research represents the first systematic examination of the mechanisms of proteolvtic degradation of structural proteins in both axons and mvelin. Our preliminary data have already identified several axonally-enriched proteins that are vulnerable to proteolysis (neurofilament- H, and -L, microtubule-associated protein tau, axolemma-associated amyloid precursor protein [APR] and cytoskeletal proteins alphall- and (betaII-spectrin). Importantly, we have also identified at least two myelin proteins that are proteolysed after TBI (myelin basic protein [MBP] and myelin oligodendrocyte specific protein [MOSP]). Unique in vivo cleavage sites in proteolysis-prone protein substrates will be identified with state-of-the- art proteomic techniques. This knowledge will then allow us to generate novel """"""""fragment-specific"""""""" antibodies, which will be used to immunohistochemically examine the precise subcellular distribution of these proteolytic products. The same antibody tools will be used to configure enzyme-linked immunoassays (ELISAs) to quantify these axonal and myelin proteolytic products in both brain tissue and cerebrospinal fluid (CSF). The latter method, if successful, will provide a novel and minimally-invasive way of quantifying TBI-associated axonal and myelin damage. These advances in understanding the proteolvtic mechanisms underlying axonal and myelin pathology in TBI will greatly accelerate development of therapies preserving the structural and functional integrity of axons and myelin.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
7R01NS049175-04
Application #
7497195
Study Section
Clinical Neuroscience and Disease Study Section (CND)
Program Officer
Hicks, Ramona R
Project Start
2005-05-01
Project End
2009-04-30
Budget Start
2007-12-01
Budget End
2008-04-30
Support Year
4
Fiscal Year
2007
Total Cost
$326,474
Indirect Cost
Name
Banyan Biomarkers, Inc.
Department
Type
DUNS #
168789274
City
Alachua
State
FL
Country
United States
Zip Code
32615
Wang, Kevin K W; Yang, Zhihui; Chiu, Allen et al. (2016) Examining the Neural and Astroglial Protective Effects of Cellular Prion Protein Expression and Cell Death Protease Inhibition in Mouse Cerebrocortical Mixed Cultures. Mol Neurobiol 53:4821-32
Kobeissy, Firas H; Liu, Ming Cheng; Yang, Zhihui et al. (2015) Degradation of ?II-Spectrin Protein by Calpain-2 and Caspase-3 Under Neurotoxic and Traumatic Brain Injury Conditions. Mol Neurobiol 52:696-709
Zhang, Zhiqun; Zoltewicz, J Susie; Mondello, Stefania et al. (2014) Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One 9:e92698
Mondello, Stefania; Gabrielli, Andrea; Catani, Sheila et al. (2012) Increased levels of serum MAP-2 at 6-months correlate with improved outcome in survivors of severe traumatic brain injury. Brain Inj 26:1629-35
Mondello, Stefania; Jeromin, Andreas; Buki, Andras et al. (2012) Glial neuronal ratio: a novel index for differentiating injury type in patients with severe traumatic brain injury. J Neurotrauma 29:1096-104
Mondello, Stefania; Linnet, Akinyi; Buki, Andras et al. (2012) Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery 70:666-75
Czeiter, Endre; Mondello, Stefania; Kovacs, Noemi et al. (2012) Brain injury biomarkers may improve the predictive power of the IMPACT outcome calculator. J Neurotrauma 29:1770-8
Mondello, Stefania; Papa, Linda; Buki, Andras et al. (2011) Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study. Crit Care 15:R156
Liu, Ming Cheng; Kobeissy, Firas; Zheng, Wenrong et al. (2011) Dual vulnerability of tau to calpains and caspase-3 proteolysis under neurotoxic and neurodegenerative conditions. ASN Neuro 3:e00051
Liu, Ming C; Akinyi, Linnet; Scharf, Dancia et al. (2010) Ubiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats. Eur J Neurosci 31:722-32

Showing the most recent 10 out of 28 publications