Traumatic brain injury (TBI) results in cognitive and motor deficits involving altered excitatory neurotransmission and plasticity, including a loss of long term potentiation (LTP). Abnormal excitatory synaptic function could result from changes in network circuitry, synapse number or morphology, and/or presynaptic or postsynaptic neuronal function. The overall objective of our research is to understand the mechanisms involved in TBI-induced alterations of excitatory transmission at the electrophysiological, biochemical and molecular level. Our hypothesis is that TBI-induced changes in the properties and/or regulation of postsynaptic glutamate receptors contribute to the alterations in synaptic function and information processing observed in surviving neurons after TBI. In vitro traumatic injury produces highly novel changes in neuronal glutamate receptors, which mediate excitatory synaptic transmission and plasticity. Patch clamp electrophysiology, confocal microscopy, immunocytochemistry, and Western blot analysis will be used to study cultured cortical and hippocampal pyramidal neurons sub lethally injured using the in vitro stretch model. We will determine whether injury-induced changes in excitatory postsynaptic currents are due to direct alterations in postsynaptic AMPA and NMDA receptors and identify the specific intracellular signaling systems involved, which we hypothesize may include calcium/calmodulin kinase II, and PKC. Furthermore, we will determine whether activation of these intracellular pathways following injury leads to abnormal glutamate receptor phosphorylation during basal synaptic transmission and under conditions that normally induce synaptic plasticity. Carrying out these Specific Aims will elucidate how mechanical injury alters excitatory synaptic transmission and synaptic regulation in both the cortex and hippocampus and determine if these alterations are mediated by changes in postsynaptic glutamate receptors, including abnormal receptor phosphorylation. An understanding of the molecular mechanisms responsible for abnormal synaptic transmission in specific brain regions following TBI may assist in the development of new TBI treatments and will help direct future research of cognitive and motor deficits following in vivo TBI. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS049519-01A2
Application #
7201888
Study Section
Clinical Neuroscience and Disease Study Section (CND)
Program Officer
Hicks, Ramona R
Project Start
2007-01-03
Project End
2010-12-31
Budget Start
2007-01-03
Budget End
2007-12-31
Support Year
1
Fiscal Year
2007
Total Cost
$319,871
Indirect Cost
Name
Virginia Commonwealth University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Ferrario, Carrie R; Ndukwe, Blaise O; Ren, Jianhua et al. (2013) Stretch injury selectively enhances extrasynaptic, GluN2B-containing NMDA receptor function in cortical neurons. J Neurophysiol 110:131-40
Goforth, Paulette B; Ren, Jianhua; Schwartz, Benjamin S et al. (2011) Excitatory synaptic transmission and network activity are depressed following mechanical injury in cortical neurons. J Neurophysiol 105:2350-63
Green, M E; Goforth, P B; Satin, L S et al. (2010) An integrated instrument for rapidly deforming living cells using rapid pressure pulses and simultaneously monitoring applied strain in near real time. Rev Sci Instrum 81:125102
Sim-Selley, Laura J; Goforth, Paulette B; Mba, Mba U et al. (2009) Sphingosine-1-phosphate receptors mediate neuromodulatory functions in the CNS. J Neurochem 110:1191-202