While current drug therapies have dramatically increased the longevity and quality of life for AIDS patients, virological failure-the inability to maintain suppression of HIV replication-does occur. Much, but not all of this failure appears attributable to the development of antiretroviral resistance mutations. The reemergence of viremia can extend to the cerebrospinal fluid (CSF) suggesting new infection and/or reactivation of latent HIV infection within the brain. Indeed, it is often proposed that the brain serves as an important HIV reservoir. The mechanisms governing transcriptional regulation of HIV replication in brain, as well as reactivation of latent HIV infection, remain in question, this application targets these critical issues, particularly within the context of astrocyte-macrophage interactions. Under both normal and pathological conditions, these two cell types interact structurally, and functionally, in a myriad of ways. Also, both are susceptible to HIV infection, but differ significantly in the course of that infection. Macrophages support full-blown productive replication, while astrocytes develop a nonproductive infection, which can support transcription of the HIV accessory genes. In preliminary studies we have found that tat and nef expressed within astrocytes can trigger HIV expression from latently-infected macrophages, that tat expression in astrocytes leads to upregulation of the endothelin-1(ET-1) gene, and that ET-1 is regulated at the transcriptional and translational level in astrocytes by tat, gp120 and HIV infection. ET-1 is a potent vasoconstrictor involved in ischemia, disruption of the blood-brain barrier and neuronal death, which has been little studied in the setting of HIV brain infection. Based on these and other observations we propose to (1) examine HIV accessory gene transcription in astrocytes and determine if, and how, this transcription can lead to activation of latent HIV infection in macrophages and role in ET1 induction, (2) examine HIV-mediated induction of ET1 in astrocytes and macrophages and (3) determine the effects of statins on ET1 regulation in HIV-infected astrocytes and macrophages. These studies will utilize both primary cells and neoplastic cell lines stably transfected with HIV accessory genes, HIV reporter systems or ET-1 promoter constructs. Astrocyte-macrophage interactions will be mimicked using coculture systems. This work should significantly advance our understanding of the regulation of HIV replication and expression in brain, particularly the reactivation of latent infection. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS050064-02
Application #
7168847
Study Section
Special Emphasis Panel (ZRG1-AARR-A (05))
Program Officer
Wong, May
Project Start
2006-01-15
Project End
2007-06-30
Budget Start
2007-01-01
Budget End
2007-06-30
Support Year
2
Fiscal Year
2007
Total Cost
$87,072
Indirect Cost
Name
Johns Hopkins University
Department
Neurology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Mehla, Rajeev; Chauhan, Ashok (2015) HIV-1 differentially modulates autophagy in neurons and astrocytes. J Neuroimmunol 285:106-18
Chauhan, Ashok (2015) Enigma of HIV-1 latent infection in astrocytes: an in-vitro study using protein kinase C agonist as a latency reversing agent. Microbes Infect 17:651-9
Chauhan, Ashok; Khandkar, Mehrab (2015) Endocytosis of human immunodeficiency virus 1 (HIV-1) in astrocytes: a fiery path to its destination. Microb Pathog 78:1-6
Chauhan, Ashok; Tikoo, Akshay; Patel, Jankiben et al. (2014) HIV-1 endocytosis in astrocytes: a kiss of death or survival of the fittest? Neurosci Res 88:16-22
Chauhan, Ashok; Mehla, Rajeev; Vijayakumar, Theophilus Sunder et al. (2014) Endocytosis-mediated HIV-1 entry and its significance in the elusive behavior of the virus in astrocytes. Virology 456-457:1-19
Mehla, Rajeev; Bivalkar-Mehla, Shalmali; Nagarkatti, Mitzi et al. (2012) Programming of neurotoxic cofactor CXCL-10 in HIV-1-associated dementia: abrogation of CXCL-10-induced neuro-glial toxicity in vitro by PKC activator. J Neuroinflammation 9:239
Mehla, Rajeev; Bivalkar-Mehla, Shalmali; Chauhan, Ashok (2011) A flavonoid, luteolin, cripples HIV-1 by abrogation of tat function. PLoS One 6:e27915
Bivalkar-Mehla, Shalmali; Vakharia, Janaki; Mehla, Rajeev et al. (2011) Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system. Virus Res 155:1-9
Mehla, Rajeev; Bivalkar-Mehla, Shalmali; Zhang, Ruonan et al. (2010) Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner. PLoS One 5:e11160
Zhang, Ruonan; Mehla, Rajeev; Chauhan, Ashok (2010) Perturbation of host nuclear membrane component RanBP2 impairs the nuclear import of human immunodeficiency virus -1 preintegration complex (DNA). PLoS One 5:e15620

Showing the most recent 10 out of 13 publications