Progesterone (P) plays a key role in the pathophysiology of """"""""catamenial epilepsy"""""""", a menstrual cyclerelated seizure disorder that affects many women with epilepsy. While P's endocrine actions are mediated by the progesterone receptor (PR), P's molecular mechanism of action in seizure activity is not clearly understood. P modulates seizure activity partly through conversion to allopregnanolone, which enhances GABAA receptor function. Recently, we have made the novel discovery that PRs play a key role in seizure susceptibility. Our preliminary results underscore that PR knockout (PRKO) mice exhibit elevated seizure threshold and resistance to kindling epileptogenesis, suggesting that PRs mediate seizure susceptibility. In this application, we propose to elucidate the molecular mechanisms whereby PRs increase seizure susceptibility in the hippocampus, utilizing genetic, molecular and electrophysiological approaches. We hypothesize that progesterone's actions on seizure activity are due in part to PR regulation of hippocampal GABA^ receptor subunit expression and function that results in reduced inhibition and thereby seizure susceptibility. PR-mediated """"""""subunit switching"""""""" leading to alterations of GABAA receptor subunit composition and functional properties are the molecular mechanism by which P controls seizure susceptibility. We propose to test this hypothesis critically utilizing 3 model systems that are well established in our lab: 1) PRKO transgenic mouse model; 2) Antisense PR inhibition in wild-type mice; and 3) RU-486 blockade of PR function in wild-type mice.
The Specific Aims of this proposal are: 1) to determine whether PRs increase seizure susceptibility using the kindling model of epilepsy; and 2) to determine whether PRs are involved in P induced alterations in GABAA receptor subunit expression and channel function.
Aim 1 will examine the rate of hippocampus kindling in WT and PRKO mice, with and without P and/or finasteride treatment, as an indicator of epileptogenesis.
Aim 2 will assess mRNA (real-time PCR) and protein levels (Westerns blots) of GABAA receptor subunits in hippocampal subfields in WT and PRKO mice treated with P, P+finasteride, and 24 hrs after neurosteroid withdrawal. We will verify the functional importance of P induced changes in GABAA receptor subunit expression by recording GABA-gated CI"""""""" currents in acutely isolated hippocampal neurons using patch-clamp electrophysiology. Significance. The proposed study will provide novel information on the P mechanisms governing regulation of seizure susceptibility, which could lead to improved understanding of catamenial epilepsy. Relevance. Women with catamenial epilepsy have seizures clustered around their monthly cycle. However, currently the pathophysiology of this condition is not fully understood. The studies proposed in this application will help better understand the disease mechanism and thereby allow development of specific therapies for catamenial epilepsy and other conditions associated with fluctuations in progesterone levels. ? ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS051398-01A2
Application #
7261551
Study Section
Clinical Neuroscience and Disease Study Section (CND)
Program Officer
Jacobs, Margaret
Project Start
2007-08-01
Project End
2012-07-31
Budget Start
2007-08-01
Budget End
2008-07-31
Support Year
1
Fiscal Year
2007
Total Cost
$299,250
Indirect Cost
Name
North Carolina State University Raleigh
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
042092122
City
Raleigh
State
NC
Country
United States
Zip Code
27695
Reddy, Doodipala Samba (2018) GABA-A Receptors Mediate Tonic Inhibition and Neurosteroid Sensitivity in the Brain. Vitam Horm 107:177-191
Reddy, Doodipala Samba; Gangisetty, Omkaram; Wu, Xin (2017) PR-independent neurosteroid regulation of ?2-GABA-A receptors in the hippocampus subfields. Brain Res 1659:142-147
Reddy, Doodipala Samba (2017) Do oral contraceptives increase epileptic seizures? Expert Rev Neurother 17:129-134
Clossen, Bryan L; Reddy, Doodipala Samba (2017) Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol Basis Dis 1863:1519-1538
Clossen, Bryan L; Reddy, Doodipala Samba (2017) Catamenial-like seizure exacerbation in mice with targeted ablation of extrasynaptic ?GABA-a receptors in the brain. J Neurosci Res 95:1906-1916
Samba Reddy, Doodipala (2017) Sex differences in the anticonvulsant activity of neurosteroids. J Neurosci Res 95:661-670
Reddy, Doodipala Samba; Estes, William A (2016) Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol Sci 37:543-561
Younus, Iyan; Reddy, Doodipala Samba (2016) Seizure facilitating activity of the oral contraceptive ethinyl estradiol. Epilepsy Res 121:29-32
Carver, Chase Matthew; Chuang, Shu-Hui; Reddy, Doodipala Samba (2016) Zinc Selectively Blocks Neurosteroid-Sensitive Extrasynaptic ?GABAA Receptors in the Hippocampus. J Neurosci 36:8070-7
Wu, Xin; Muthuchamy, Mariappan; Reddy, Doodipala Samba (2016) Atomic Force Microscopy Protocol for Measurement of Membrane Plasticity and Extracellular Interactions in Single Neurons in Epilepsy. Front Aging Neurosci 8:88

Showing the most recent 10 out of 38 publications